Public Roads

A JOURNALOFHIGHWAY RESEARCH

BLISHED BY IE BUREAU OF BLIC ROADS,
S. DEPARTMENT COMMERCE,

ISHINGTON

Increasing traffic needs many improvements such as this one on US 40 in California

Public Roads

AJOURNALOFHIGHWAY RESEARCH

IN THIS ISSUE

$$
\text { Traffic Trends on Rural Roads in 1949......... } 85
$$

Flame-Photometer Determination of Sodium and Potassium in Soils and Other Siliceous Mate- rials 99
Report of Trends in Motor Vehicle Travel discon- tinued

Vol. 26, No. 5 December 195t
Published Bimonthly

BUREAU OF PUBLIC ROAD Washington $25, \mathrm{D} . \mathrm{C}$

Regional Headquarteri 180 New Montgomery St San Francisco 5, Calif

DIVISION OFFICES

No. 1. 718 Standard Bldg., Albany 7, N. Y. Connecticut, Maine, Massachusetts, New Hamp shire, New Jersey, New York, Rhode Island, an Vermont.

No. 2. 2034 Alcott Hall, Washington 25, D. C. Delaware, District of Columbia, Maryland, Ohic Pennsylvania, Virginia, and West Virginia.
No. 3. 504 Atlanta National Bldg., Atlanta 3, Gஃ Alabama, Florida, Georgia, Mississippi, Nort Carolina, South Carolina, and Tennessee.

No. 4. South Chicago Post Office, Chicago 17, Il Illinois, Indiana, Kentucky, and Michigan.

No. 5. (North). Main Post Office, St. Paul 1, Minn Minnesota, North Dakota, South Dakota, an Wisconsin.

No. 5. (South). Fidelity Bldg., Kansas City 6, Mr Iowa, Kansas, Missouri, and Nebraska.
No. 6. 502 U. S. Courthouse, Fort Worth 2, Tez Arkansas, Louisiana, Oklahoma, and Texas.

No. 7. 180 New Montgomery St., San Francisco ! Calif.
Arizona, California, Nevada, and Hawaii.
No. 8. 753 Morgan Bldg., Portland 8, Oreg. Idaho, Montana, Oregon, and Washington.
No. 9. 254 New Customhouse, Denver 2, Colo. Colorado, New Mexico, Utah, and Wyoming.
No. 10. Federal Bldg., Juneau, Alaska. Alaska.

Public Roads is sold by the Superintendent of Documents, Gover ment Printing Office, Washington 25, D. C., at $\$ 1$ per year (forei subscription $\$ 1.25$) or 20 cents per single copy. Free distributi is limited to public officials actually engaged in planning or co structing highways, and to instructors of highway engineering. The are no vacancies in the free list at present.

The printing of this publication has been approved by the Direct of the Bureau of the Budget January 7, 1949.

BUREAU OF PUBLICROAD
U. S. DEPARTMENT OF COMMERC
E. A. STROMBERG, Edit.

Traffic Trends on Rurral Roads in 1949

GIY THE HIGHWAY TRANSPORT RESEARCH BRANCH IJREAU OF PUBLIC ROADS

Reported by THOMAS B. DIMMICK, Head, Current Data Analysis Unit

Total travel on rural roads in 1949 broke Ia records, exceeding the 1948 previous high b. 7 percent and the prewar peak by 27 p-cent. On the 350,000 miles of main rural ruds in the United States, travel in 1949 was orr 159 billion vehicle-miles, of which 78 p*cent was by passenger cars, 1 percent by bsses, and 21 by freight-carrying vehicles. Trucks and combinations hauled 7 perevt more ton-mileage of freight in 1949 tin in 1948 and 52 percent more than in 111, the increase resulting largely from glater use of heavier vehicles. Truck-combution travel was 10 percent higher than i) 1948, 85 percent higher than in 1941, and 21 percent higher than in 1936. Compar)le figures for single-unit trucks were 5 , 2 and 92 percent. The average carried ldd for all trucks and combinations in 1949 is 2, 40, and 76 percent above the averages i 1948, 1941, and 1936, respectively.
In 1949 more than 5 percent of all trucks ad combinations exceeded a State legal ight limit, and 16 percent of the combirtions were illegally overloaded in some Irticular. In comparison with 1948 , the Ircentage of overweight vehicles decreased sghtly in 1949 except in the western States.

IOTOR-VEHICLE TRAVEL in 1949 broke all previous records for the fourth casecutive year. The 1949 traffic on all ral roads was 7 percent higher than in 1948, percent higher than in 1947, and about 27 jrcent above the 1946 volume and the 1941 jewar peak. Geographically the increases cer 1948 ranged from 4 percent in the western lates to 9 percent in the eastern States, with : average increase in the central States of 7 prcent. The largest increase in any of the aited States census regions ${ }^{1}$ was 12 percent i the West North Central region and the sallest increase was 1 percent in the Pacific fion. Records from about 800 automatic affic recorders, operated continuously - roughout the year at permanent stations on ain and local roads in all States, were used nerally to establish these trends. More Diflensive traffic surveys, made by a number States, yielded valuable information conrning the total volume of rural traffic within eir boundaries. Consideration has been ven to all such available data in this analysis. here States have prepared and submitted shicle-mile travel estimates of their own, lese have been employed rather than estiates made by applying trend factors.

[^0]

Figure 1.-Travel on all rural roads in 1941, 1948, and 1949, by months.

The variation in travel on rural roads in three main geographic divisions and in the United States as a whole is illustrated in figure 1 for the years 1949, 1948, and 1941, the latter being the prewar peak year. Travel in each month of 1949 in the eastern and central regions and in the United States as a whole was well above that of the corresponding
month of the earlier years. The western regions, however, showed only a slight increase from 1948 to 1949.
Summer travel in 1949 reached its prewar importance for the first time since the end of hostilities in 1945. In the last two prewar years the average monthly travel in July and August was 23 percent above that of the
average month of the year. Restrictions placed on nonessential driving in 1942 reduced travel in the summer months so that only 13 or 14 percent more traffic used the roads in the summer months than in the average month of the war years. Following the war this seasonal travel increased each succeeding year. Not until 1949, however, did vacation and other summer driving again reach the prewar level, 23 percent above the annual average.

1949 Summer Loadometer Survey

The large number of automatic traffic recorders operated on the rural roads of each State gives a good indication of the trend of total traffic on those highways but provides no indication concerning the classification of vehicles by type, weight, or other characteristics. During certain prewar years, generally 1936 and 1937, nearly every State conducted a comprehensive survey of traffic in which all vehicles counted were classified. At the same time a large number of trucks and truck combinations were stopped for the gathering of information concerning their weight, dimensions, and other important features.

In order to determine the wartime trend in weights, dimensions, and other characteristics of commercial vehicles, a brief check survey was made in the summer of 1942 at certain typical stations in most States. From the information collected in the two surveys, which were kept strictly comparable, trends were calculated which were used to determine the changes in traffic and vehicle characteristics that had taken place since the comprehensive survey was made. Since 1942, check surveys have been made annually; most of the States have participated in these each year and all have participated at some time. ${ }^{2}$ Forty-six States conducted such surveys in 1949.

Classification counts made in numerous States, in addition to those of the summer survey, added valuable information concerning vehicle-type frequencies. In a few States expanded loadometer surveys have furnished more reliable data concerning vehicle types and weights than can be obtained from the trend data alone, and these have been used in the analysis when available.

The stations used in these summer surveys were selected initially to give a representative cross section of traffic on main rural roads. They were operated for one or more 8 -hour periods on a weekday, generally from either $6 \mathrm{a} . \mathrm{m}$. to $2 \mathrm{p} . \mathrm{m}$., or from $2 \mathrm{p} . \mathrm{m}$. to $10 \mathrm{p} . \mathrm{m}$. All traffic passing through the stations during the period was counted and classified into the following categories: local passenger cars; foreign (out-of-State) passenger cars; panel and pickup trucks; ${ }^{3}$ other two-axle, four-tire trucks; two-axle, six-tire trucks; three-axle trucks; truck-tractor and semitrailer combinations; truck and trailer combinations or

[^1]Table 1.-Survey period, number of stations operated, number of vehicles counted, a| number weighed in each State in the special weight surveys, summer of 1949

${ }^{1}$ No survey made. ${ }^{2}$ Passenger cars not counted; figure given is an estimate based on data from other rerts.
truck-tractor semitrailer and trailer combinations; and busses. The combination-type vehicles were further subdivided according to the number of axles of each.

Most of the weight stations were operated during July, August, and September. Arizona completed its work in June; California started its survey on the last day in May and
completed it in June; Texas operater its stations from June to September; Washirton conducted its operations from June to Oct jer.

The survey period, number of staons operated, number of vehicles counted, and number weighed are shown for each Str b in table 1. Almost $13 / 4$ million vehicles fere counted at all stations during the period sthe

IMrf sivey. About one-fifth of these were freightcrrying vehicles, of which almost one-half we weighed.
Vherever traffic volume permitted, every ok and truck combination was stopped and ighed. Where this procedure was impracii.ble all of the less common types were whed and the common vehicle types were Wghed in sufficient numbers to establish their cl racteristics from the sample. The type direhicle, whether loaded or empty, the numbi of axles, and the weight of each axle were reorded. The axle-spacing and total wheelbie length of the heavier vehicles ${ }^{4}$ were masured, and the commodity carried and the the of operation-private or for-hire-were forded. Passenger cars and busses were cinted but not stopped for weighing.

Prewar Travel Trend Maintained

Figure 2 shows in chart form the vehiclemeage of travel on all rural roads, by type vehicle, for each year from 1936 to 1949, iflusive. It is apparent that the effect of t, drastic restriction of travel during the war priod, 1942-45, has now been entirely overcne. A straight line from the top of the - for 1936 to the top of the bar for 1949 pises through the tops of the bars for 1937, 139, and 1940, and only slightly above the t) of the bar for 1938 and slightly below that f 1941. The recession in business activity ir 1938 probably accounts for the lessened viume of traffic in that year; and 1941 was avear of exceptional activity in preparation f the war that followed. Altogether, total t ffic has recovered completely from the eect of the war and stands, as near as can t determined from the long-time trend, at a lel which would have been reached had the ir not occurred.
In the case of travel of trucks and truck cnbinations, ${ }^{5}$ the 1949 value fits the 1936-40 t ind, projected, almost exactly. For truck onbinations alone, the 1936-48 line lies syhtly above the tops of the bars for all intervaing years. This and other trend data inciate an accelerating growth in traffic by viicles of this type.

Trucks and truck combinations weighing 13 tons or more olaving an axle weighing 18,000 pounds or more.
In this article, the term "truck" is used to indicate a syle-unit vehicle; "truck combination" to indicate trucktetor semitrafler (with or without full trailer) and truck ph full trailer; and "trucks and truck combinations" to ficate all of these vehicles together.

Figure 2.-Travel on all rural roads, 1936-49, by classes of vehicles.

Travel Increases

The ratio of traffic volumes on main rural roads in 1949 to the corresponding volumes in 1948 is shown in table 2. Highways classified under the term "main" include about 350,000 miles and, in general, are those of the entire State systems. In such States as North Carolina, Pennsylvania, and Virginia, where all or a large part of the rural-road mileage is under State control, only the mileage in the primary system is included. The consistent increase in travel on these main highways by most types of vehicles and in all sections of the country is evident in the table. Travel by
both local and foreign (out-of-State) passenger cars increased in all regions, but travel by single-unit trucks decreased in the Middle Atlantic, South Atlantic, and Pacific regions and increased only slightly in the New England and West South Central regions. The increases in travel by truck combinations and the decreases by single-unit trucks appear to be a result of the continued shifting to the heavier types.

Use of Truck Combinations

The percentage of travel by vehicle types on main rural roads in 1949 is given in table 3.

Table 2.-Ratio of 1949 traffic on main rural roads to corresponding traffic in $1948{ }^{1}$

Vehicle type	Eastern regions				Central regions					Western regions			United States average
	New England	Middle Atlantic	South Atlantic	Average	East North Central	East South Central	West North Central	West South Central	Average	$\begin{aligned} & \text { Moun- } \\ & \text { tain } \end{aligned}$	Pacific	Average	
Passenger cars:													
Local	1.09	1.15	1.08	1.11	1.07 1.03	1.01	1.09 1.08	1.10 1.17	1.08 1.10	1.08	1.03	1.04	1.10
Foreign	1.15	1.09 1.13	1.15 1.10	1.13 1.12	1.03 1.06	1.33 1.10	1.08	1.17 1.12	1.09	1.07	1.04	1.05	1.09
Trucks and truck combinations:	1.11	1.13	1.10	1.12	1.06	1.10						1.0	
Single-unit trucks......-.	1.01	. 85	. 99	. 93	1.09	1.10	1.08	1.02	1.07	1.08	1.84	1.96	1.05 1.10
Truck combinations	1.10	1.17	1.31	1. 22	1.02	1.11	1.06 1.07	1.05 1.03	1.04 1.06	1.30 1.12	1.26 .95	1.27 1.07	1.10 1.06
All trucks and truck combinations....	1.03	. 93	1.06	1.01	1.06								
Busses	. 75	. 99	. 99	. 95	. 87	1.06	. 84	1.02	. 94	. 94	. 97	. 96	. 95
All vehicles.	1.09	1.09	1.09	1.09	1.06	1.10	1.08	1.09	1.08	1.08	1.02	1.06	1.08

"The ratios for "all vehicles" are based on year-round automatic recorder data, while those for the individual vehicle types are based principally on summer counts.

Table 3.-Percentage distribution of travel, by vehicle type and by type of operation, on main rural roads in the summer of 1949

Vehicle type	Eastern regions				Central regions					Western regions			United States average	U. S. percentage distribution of trucks and truek combinations by type of operation																
	New England	Middle Atlantic	South Atlantic	$\begin{aligned} & \text { Aver- } \\ & \text { age } \end{aligned}$	East North Central	East South Central	West North Central	West South Central	Average	$\begin{gathered} \text { Moun- } \\ \text { tain } \end{gathered}$	Pacific	Average																		
														Private	For hir															
All passenger car	81.49	79.38	76.18	78.27	79.30	67.83	75. 20	73.88	75.50	75.99	86.70	82.87	77.70	------																
Single-unit trucks:																														
Other 2-axle, 4-tire	. 65	1.18	1.04	1.04	. 42	. 57	1.02	. 37	. 57	. 79	. 52	. 62	. 73	4.38	1.68 .39															
Other 2-axle, 6-tir	7.16	7.49	7.91	7.63	6.62	11.70	9.79	7.90	8. 35	6.99	3.54	4.77	7.49	39.18	22.36															
3-axle.	. 34	. 42	. 35	. 38	. 32	. 22	26	. 18	. 26	. 36	. 54	. 48	. 33	1.45	2. $0:$															
All single-unit truck	13.46	13.44	16.19	14. 65	12.68	24.60	18.12	18.47	16.95	17.90	7.96	11.52	15.24	85.37	26.40															
Truck-tractor and semitrailer combinations: 3-axle	3.58	5. 05	4. 89	4. 77	4. 58	4.85	3.33	4.65	4.34	1.74	. 77	1.11	3. 92	10.43	45, 8 f															
4 -axle	(i) 15	1. 06	1. 29	1.03	2.14	. 80	2. 09	1. 67	1.83	1.34	. 85	1.02	1.43	3.02	19.31															
5 -axle or mo	(i)	. 01	(1)	. 01	. 23	. 02	. 19	. 04	. 15	1.86	1.36	1.19	1. 28	. 40	4.41															
tions.	3. 73	6.12	6. 18	5.81	6.95	5. 67	5. 61	6. 36	6. 32	3.94	2.98	3.32	5. 63	13.85	69.6															
Truck and trailer combinations: 4 -axle or less 5 -axle 6 -axle or more \qquad	. 02	. 01	. 01	. 01	.05 .17 .11	(1)	${ }_{\text {(i) }}{ }^{\text {(1) }}$ 20	. 17	.11 .07 .04	$\begin{aligned} & .23 \\ & .34 \\ & .32 \end{aligned}$	$\begin{array}{r} .22 \\ .39 \\ .73 \end{array}$	$\begin{aligned} & .22 \\ & .38 \\ & .58 \end{aligned}$.10 .10 .12	.39 .18 .21	. 64 $1.4 t$ $1.8 t$															
All truck and trailer combinations...........-	. 02	. 01	. 01	. 01	. 33	(1)	. 20	. 18	. 22	. 89	1.34	1.18	. 32	. 78	3.9 .															
	3.75	6.13	6.19	5.82	7.28	5. 67	5.81	6. 54	6. 54	4.83	4. 32	4. 50	5.95	14.63	73.61															
All trucks and truck combinations.....	17. 21	19.57	22.38	20.47	19.96	30.27	23.93	25.01	23.49	22. 73	12.28	16.02	21.19	100.00	100.01															
Buss	1.30	1.05	1.44	1. 26	. 74	1.90	. 87	1. 11	1.01	1. 28	1.02	1.11	1.11																	
All vehicles.	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	------	--.-.															

${ }^{1}$ Less than 0.005 percent.

In this table all single-unit trucks are divided into classification types based on the axle and tire arrangements, while the truck combinations are classified according to the total number of axles of the combination. The classification of vehicles into these types has been used only in the last three annual surveys. It has several advantages over the old "light, medium, and heavy" grouping, among which are more homogeneous groupings and more positive identification of the types.

The data in table 3 indicate that truck travel in 1949 in proportion to total travel was heaviest in the East South Central region and next heaviest in the West South Central region. Somewhat different figures were found in 1948: the West South Central region then had the highest percentage of truck traffic, followed by the West North Central and South Atlantic regions. The percentage of truck traffic in the South Atlantic, East South Central, West North Central, West

South Central, and Mountain regions ceeded 20 percent of the total traffic in bh 1948 and 1949. More urbanized areas, sh as the New England, Middle Atlantic, Pacific regions, where total traffic is rater heavy, have the smallest percentage of trk travel. The table indicates that certain ty ${ }^{\text {as }}$ of vehicles are popular in some sections. instance, the truck and trailer combinatis with six or more axles and the truck-trans and semitrailer combinations with five or me

Figure 3.-Average weights of loaded and of empty trucks and truck combinations in the summers of 1942-49 and in a correspondin period of a prewar year.

Vehicle type

Eastern regions				Central regions					Western regions			United States average	U. 8, average by type of operation	
New England	Middle Atlantic	South Atlantic	Average	East North Central	East South Central	West North Central	West South Central	Average	Mountain	Pacific	Average		Private	Forhire

Average Weights of Loaded Vehicles

4,756	5,015	5,041	5,111	5,154
6,301	6,281	6,571	6,974	6,621
13,307	14,196	13,007	13,611	13,674
27,675	30,716	27,734	28,635	25,951
10,716	11,565	10,339	10,879	10,920
37,898	39,629	37,322	34,364	39,135
(1)	48,506	69,361	$-37,127$	18,109
37,889	39,653	38,482	34,364	38,462
19,152	20,643	22,638	17,422	19,589

5,907
6,883
12,959
28,101
9,213
36,211
18,495
35,719
16,560

Abstract

5,100 6,302 13,514 25,880 10,879 47,40 59,45 50,22

22,64

5,242
6,447
13,614
28,128
10,765
39,151
55,458
39,999
20,432

5,208	6,702
6,358	10,221
13,233	15,789
$-27,484$	29,081
10,150	16,222
37,255	40,173
42,182	64,321
37,543	41,427
14,811	35,374

Average Welghts of Empty Vehicles

```
ingle-unit trucks:
    Panel and pickup-
    Other 2-axle, 6-tire
    3-axle...
    ruck combinations
    Truck-tractor and semitrailer
    Truck and trailer.-
        Average.
    verage, all trucks and truck combinations.
```

3, 851	4,039	3, 971	4, 078	4,205	4, 446
5, 126	5, 048	4,836	5, 044	5, 271	5,139
7,310	8, 182	7, 668	7,728	8,059	7,692
13, 143	14, 609	14,500	11,953	13,585	16, 187
5,424	6, 108	5,885	5, 529	6,033	5, 991
18,787	19,815	19,588	16,690	20, 250	18,670
(1)	(1)	31, 825		12, 393	15, 127
18,784	19,814	20,389	16,690	19,906	18,579
7,694	8,655	10,119	6,781	8,852	8,673

4,189	4,141
5,102	5,285
7,784	8,285
14,489	14,377
5,864	5,553
19,094	23,016
25,124	29,595
19,330	24,722
8,700	8,142

3,824	4,038	4,121
4,585	4,971	5,057
7,482	7,978	7,942
14,139	14,225	14,483
5,572	5,560	5,903
22,103	22,592	19,610
27,837	28,523	27,142
24,296	24,503	20,019
8,832	8,406	8,648

4,099	4,784
5,018	7,131
7,828	8,636
14,519	13,644
5,724	8,716
19,088	19,945
23,806	29,630
19,314	20,546
7,252	16,484

Data omitted because of insufficient sample.
i3s are used more frequently in the Pacific rion than in any other area. Combinations folving trailers are used much less in the Eit South Central region and in the three eitern regions. The percentage of travel by a combinations has increased steadily over H. t in the previous years' samples, this pere, tage being 5.95 in 1949, 5.84 in 1948, 5.73 i1947, and 5.26 in 1946.

Private and For-Hire Traffic

in the survey conducted in 1949 informa$t n$ was gathered in most of the participating Sites concerning the use-classification under wich each vehicle was being operated. Data vre reported separately for private and for-
hire vehicles of each type, showing the percentage loaded and the average weight of loaded and of empty vehicles. The opera-tion-use classification of each of the heavy vehicles-those with one or more axles weighing 18,000 pounds or more, or with a gross weight of 26,000 pounds or more-generally was designated. This information made possible the calculating of vehicle-mileages, tonmileages, and other data on the main rural roads by the various types of trucks and truck combinations privately operated and operated for-hire.

In the last two columns of table 3 are shown the percentage distribution of travel of all privately operated and for-hire trucks and
combinations, by vehicle type. In general the lighter types of vehicles predominate in the private classification and, conversely, the heavier vehicles constitute a much higher proportion of the for-hire vehicles. This difference is very noticeable in the percentages for the light panel and pickup trucks and for the heavy three-axle truck-tractors with semitrailers. Over 40 percent of the privately operated truck travel was by the panel and pickup type, while less than 2 percent of the for-hire vehicle travel was by this type. On the other hand, less than 15 percent of the travel of all privately operated vehicles was by truck combinations, while of the for-hire travel almost 74 percent was by combinations.

Figure 4.-Travel on main rural roads, 1936-49, by loaded and by empty trucks and truck combinations.

Table 5.-Comparison of estimated vehicle-miles of travel on main rural roads in 1936, 1941, 1946, 1948, and 1949

Year	All vehicles, vehiclemiles	Passenger cars and busses 1		All trucks and truck combinations		Single-unit trucks		Truck combinations	
		Percentage of all vehicles	Vehiclemiles	```Percent- age of all vehicles```	Vehiclemiles	Percentage of all trucks and truck combinations	Vehiclemiles	Percent- age of all trucks and truck combinations	Vehiclemiles
	Millions								
1936	88, 412	82.6	73, 005	17.4	15, 407	82.1	12,650	17.9	2,757
1941	122, 505	80.3	98,320	19.7	24, 185	78.8	19,057	21.2	5,128
1941: 1936 ratio	1.39	-97	1.35	1.18	1.57	. 96	1.51	1.18	1.86
1946	124, 149	80.4	99, 803	19.6	24,346	73.3	17,838	26.7	6,508
1946: 1941 ratio	1.01	1.00	1.02	. 99	1.01	. 98	. 94	1. 26	1.27
1946: 1936 ratio	1. 40	. 97	1.37	1.18	1.58	7299	1.41	1. 49	2.36
1948	147, 597	78.5	115, 837	21.5	31,760	72.9	23,138	27.1	8,622
1949	159, 379	78.8	125, 602	21.2	33, 777	71.9	24, 295	28.1	9, 482
1949: 1948 ratio	1.08	1.00	1.08	. 99	1.06	. 99	1.05	1.04	1.10
1949:1941 ratio	1.80	. 98	1.28	1.08	1. 40	. 91	1.27	1.83	1.85
1949: 1986 ratio	1.80	.95	1.78	1.22	2.19	. 88	1.92	1.57	3.44
Comparison for Trucks and Truck Combinations, By Type of Operation									
Private: 1936									
1936				78.8 77.2	12,140 26,077	86.7 91.6	10,963 22,262	42.7 40.2	1,177 3,815
1949: 1986 ratio				. 98	2.15	1.06	2.03	. 94	3. 24
-hire:				21.2	3,267	13.3	1,687	57.3	1,580
1949				22.8	7,700	8.4	2, 033	59.8	5,667
1949: 1986 ratio				1.08	2.36	. 63	1.21	1.04	8. 69

${ }^{1}$ Percentages of total 1949 travel by passenger cars and by busses are reported separately in table 3

Average Weights Increase

The average weights of loaded and empty trucks and truck combinations, separately and combined, are shown graphically in figure 3 for each year from 1942 to 1949, inclusive, and in a prewar year, generally 1936 or 1937. The weights of single-unit trucks, both loaded and empty, increased each year from the 193637 period through 1945, then leveled off or decreased slightly each succeeding year. At the same time weights of truck combinations, both loaded and empty, have increased each year during the period shown. The increase in average weight of loaded combinations from the 1936-37 period to 1949 was almost 50 percent, compared to only 12 percent for single-unit trucks. The increase for all trucks and truck combinations combined was 57 percent, a figure higher than that of either type separately, because of the increased proportion of combinations in the latter years.

The average weights of the various types of loaded and empty trucks and truck combinations in the summer of 1949 are shown in table 4 for the different regions. This table brings out clearly the important differences that exist in the weight characteristics of the vehicles in the different groups. It will be noted, for example, that for the United States as a whole, the loaded three-axle, single-unit trucks weighed about twice as much as the two-axle, six-tire trucks which, in turn, weighed about twice as much as the two-axle, four-tire trucks. Similar differences existed throughout the various classifications. On the other hand the regional differences in average weight for each of the vehicle types that are common throughout the country are surprisingly small. The extremely low weights of truck and trailer combinations in the West North Central and West South Central regions indicate a predominance of small, home-made trailers of low capacity.

The average weights of loaded and empty trucks and truck combinations operated privately and for-hire in the summer of 1949 are shown in the last two columns of table 4. The for-hire vehicles, when compared by types, are generally heavier than those oper-
ated privately, and the average of all ty of for-hire vehicles, either loaded or empty; more than twice as heavy as the average the privately operated vehicles. It was sho in table 3 that the largest portion of the vate vehicles consisted of the small sin unit trucks while the greater portion of for-hire vehicles consisted of the heavy tr combinations. This decided difference in distributions of sizes of vehicles in the operation classes accounts for the g1 difference between their average weights.

Truck Travel Again Increases

Figure 4 shows a comparison of the mated vehicle-mileage of travel by loaded empty single-unit trucks and truck comb tions, separately and combined, on main r roads, for each year from 1936 to 1949, clusive. This chart demonstrates graphic the steady growth of truck traffic during prewar years, 1936-41, the temporary ef of wartime restrictions in the period 1942 and the remarkable increases in truck tri portation that have occurred since the ens hostilities in 1945.

Table 5 shows a comparison of the mated vehicle-mileage of travel by vehi of different types on all main rural road 1936, the earliest year for which comprel sive weight data are available; in 1941, peak prewar year, 5 years after the beginr of the surveys; in 1946, 10 years after beginning of the surveys; and in 1948

Figure 5.-Average load carried by trucks and truck combinations on main rural roads, 1936-49.

The ratios of 1949 travel to that of the reding years indicate that increases for ks and truck combinations generally : greater than for passenger cars, and that rsases for truck combinations were greater for single-unit trucks. In the 13 years 1936 to 1949 , passenger-car and bus el combined increased over 70 percent, sel by all trucks and combinations more 1 doubled, and travel by truck combinais (considered separately) more than tripled. he lower portion of table 5 shows a com8 son of the estimated vehicle-mileage of el in 1936 and in 1949 by privately oper$\therefore 1$ trucks and combinations, and by those 4.ated for-hire. Travel by for-hire vehicles eased somewhat more than travel by ate vehicles, the 1949:1936 ratio being i in the case of for-hire vehicles and 2.15 he case of private vehicles. Most of the rease in for-hire vehicle travel was by truck ribinations, there being only a 21-percent pease in the for-hire vehicle-mileage by fle-unit trucks compared to a 259 -percent bease by combinations. In the case of the rate vehicles, on the other hand, there of: y e substantial increases in the vehiclere page by both types.
n the lower portion of table 5 , incidentally, percentage figures refer to trucks and ck combinations only; for example, of all ijle-unit trucks, in $1936,86.7$ percent were $1+$ rivate operation and 13.3 percent for-hire.

Volume of Highway Freight

Figure 5 gives a comparison of the average led carried by single-unit trucks and truck cabinations, separately and combined, in the 1 years that the planning surveys have been orrating. The general trend of load weights *s upward throughout the period. The 3 sht decline in the weights of loads carried by sgle-unit trucks since 1945 has been more tin offset by the increased use of combinatns and the increased weights of loads carried k vehicles of this type.
Figure 6 shows a comparison for each year f.m 1936 through 1949 of the ton-mileage of fight carried by trucks and truck combinatns on main rural roads. The chart demon\&ates clearly that truck combinations are tunsporting each year a larger proportion of ta total amount of highway freight. In 1936 te truck combinations hauled slightly less tn-mileage than the single-unit trucks, while ; 1949 they hauled almost two and one-half ines as much. The rapid rate of annual jcrease in total freight carried, which took jace in the years immediately following the ir, has been reduced in the last two years to a te of increase more nearly comparable with at of prewar years.
In table 6 is shown a comparison of the rcentage of vehicles carrying loads, the 'erage carried load, and the ton-mileage rried for all trucks and combinations, for agle-unit trucks, and for truck combinations 1949 and the other significant periods used table 5. The trend from 1936 to 1949 of ierage weight carried, shown graphically in jure 5 , and that of the ton-mileage trans-

Figure 6.-Ton-miles carried by trucks and truck combinations on main rural roads, 1936-49.
ported during the same period, shown in figure 6, have already been discussed.

In the country as a whole, the percentage of trucks and truck combinations carrying loads decreased slightly from 1948 to 1949. The percentage loaded for single-unit trucks, for truck combinations, and for the two types of vehicles combined was less than the com-
parable figures for 1946, when the downward trend in these figures that had been maintained during the war appeared to be halted temporarily. Since 1946 the trend has not been clearly defined, for these percentages increased slightly in 1947 and then decreased in 1948 and again in 1949. With these latest decreases the proportion of vehicles loaded

Table 6.-Comparison of the estimated percentage of trucks and truck combinations loaded, average carried load, and ton-miles carried on main rural roads in 1936, 1941, 1946, 1948, and 1949, and similar data for privately operated and for-hire vehicles

Year	All trucks and truck combinations			Single-unit trucks			Truck combinations		
	$\begin{aligned} & \text { Per- } \\ & \text { centage } \\ & \text { loaded } \end{aligned}$	$\begin{gathered} \text { Aver- } \\ \text { age } \\ \text { weight } \\ \text { of } \\ \text { carried } \\ \text { load } \end{gathered}$	$\begin{gathered} \text { Ton- } \\ \text { miles } \\ \text { carried } \end{gathered}$	$\begin{aligned} & \text { Per- } \\ & \text { centage } \\ & \text { loaded } \end{aligned}$	Average weight of carried load	$\begin{aligned} & \text { Ton- } \\ & \text { miles } \\ & \text { carried } \end{aligned}$	Percentage loaded		$\begin{aligned} & \text { Ton- } \\ & \text { miles } \\ & \text { carried } \end{aligned}$
		Tons	$\underset{\substack{\text { Mions } \\ \hline \text { Mio- }}}{\text { Mion - }}$		Tons	$\begin{aligned} & \text { Mil- } \\ & \text { Mions } \end{aligned}$		Tons	Mil- lions
1936	62.8	2.90	28,005	60.7	1.86	14, 258	72.2	6. 90	13,747
1941	66.7	3. 64	58.737	65.4	2. 29	28.487	71.6	8.23	30, 250
1941:1936 ratio	1.06	1. 26	2.10	1.08	1.23	2.00	. 99.9	1.19	2. 20
1946	51.7	4. 84	60, 892	46. 4	2. 31	19, 101	66. 2	9.70	41.791
1946:1911 ratio 19461936 ratio	. 78	1.38 1.67	1.04 2.17	..$_{76}$	1.01	1.38	. 92	1.41	9.04
$1946: 1936$ ratio 1948	52.2	1.60	83,119	46.8	2.33	25, 219	66.5	10. 10	57,900
1949	51.6	5. 11	89, 100	46.1	2. 29	25,639	65.7	10.19	63,461
1949:1948 ratio	. 98	1.02	1.07	. 99	1.98	1.02	. 99	1.01	1. 10
1949:1941 ratio	. 77	1.49	1.52	. 70	1.00	1.90	. 92	1.24	2. 10
1949:1936 ratio	. 82	1.76	3.18	76	1.23	1.80	. 91	1.48	4.62
Privately operated trucks and truck combinations:									
1949	47.6	3. 48	43. 231	45.3	2. 10	21, 193	61.2	9. 43	22, 038
1949:1936 ratio	. 79	1.58	2.66	. 76	1.23	1.90	. 93	1. 48	4.48
For-hire trucks and truck combinations:									
nations: 19,36	71.9	5. 07	11.911	66.4	2.73	3, 078	77.3	7.23	8,833
1919	65.1	9. 16	45.869	55.1	3.97	4,446	68.7	10.65	41,423
1249:1986 ratio	. 91	1.81	3.85	. 8.3	1.45	1.44	. 89	1.47	5.03

reached a new all-time low level, only 46 percent of the single-unit trucks and less than 66 percent of the truck combinations being loaded in 1949, compared to 61 percent and 72 percent, respectively, for these two types of vehicles in 1936.

The lower portion of table 6 shows a comparison of the percentage loaded, average carried load, and ton-mileage for single-unit trucks, truck combinations, and these two types of vehicles combined, when operated as private and as for-hire vehicles. An appreciably larger percentage of the for-hire vehicles are loaded; the loads carried by these vehicles are much heavier; and the average carried loads are increasing at a more rapid rate than for privately operated vehicles. Single-unit trucks transport an important part of the freight moved in privately operated vehicles, but only a minor part of the freight moved by for-hire trucks.

The first part of table 7 gives a detailed comparison of the percentage of vehicle-miles of travel, percentage of vehicles loaded, average carried load, and percentage of total ton-mileage carried by the various types of trucks and truck combinations traveling on main rural roads in 1948 and 1949. Many
interesting comparisons can be made from this table showing the relative importance from a freight-carrying standpoint of different portions of the traffic stream. In 1949, for instance, while panel and pickup trucks traveled almost 32 percent of the vehiclemileage, they accounted for less than 3 percent of the ton-mileage. The truck-tractor and semitrailer combinations traveled less than 27 percent of the vehicle-mileage, but they carried almost 66 percent of the ton-mileage.

From the columns in table 7 showing the percentage loaded, by types, it can be observed that the percentage of vehicles carrying loads increases directly as the size of the vehicle type, extending from the light panel and pickup trucks that are loaded 36 percent of the time, to the heavy combinations that are loaded over 65 percent of the time.

The right-hand portion of table 7 shows the percentage loaded, average carried load, and percentage of total ton-mileage carried by various types of privately operated trucks and truck combinations compared to those operated for-hire on the main rural roads in 1949. The percentage of travel (vehicle-mileage) by these types is given in table 3. A comparison of vehicle-mileage percentage with ton-mileage
percentage, by operating classes, shows it panel and pickup trucks, privately operat travel over 40 percent of the vehicle-mile while transporting only about 5 percent of freight moved in privately operated vehic At the same time, for-hire panels and pick travel less than 2 percent of the total hire vehicle-mileage and carry only 0.2 pere of the total ton-mileage moved by the for-1 vehicles. The heavy-vehicle combinatic privately operated, travel about 15 perc of the total mileage and carry almost 51 I cent of the freight moved by privately of ated vehicles, while the for-hire combinati travel almost 74 percent of the total vehi mileage of all such vehicles and carry over percent of the freight transported by all for-hire trucks and combinations.

Gross Weights Increasing Slightl

Figure 7 shows for the United States 88 whole the frequency of gross weights by ye from the prewar years (generally 1936 or 19 to 1949 , of 30,000 pounds or more, of 40 , pounds or more, and of 50,000 pounds or m . The trend of frequency of heavy loads c tinues upward although the frequency 50,000 -pound weights was slightly less in 1 than in the previous year. The frequency these heaviest loads was 12 times greater 1949 than in the prewar year, the weight 40,000 pounds or more were 7 times as quent, and those of 30,000 pounds or n were $31 / 2$ times as frequent as in the earl years of the surveys. Vehicles weig? 30,000 pounds or more and 40,000 pound more appear in greater numbers than (before, whereas the number of those in heaviest group declined slightly.

The 1949 gross-weight frequency data vehicle type and region are presented in t_{2} : 8. No panels, pickups, or other two-a four-tire, single-unit trucks were found in survey weighing as much as 30,000 pounds: there is no entry for these vehicles in table, though they are included in the $t a$ number of vehicles weighed in computing frequencies for all trucks and combinati Heavy gross weights are much more frequ in the Pacific region than in other parts of country. In this region 99 of each 1 . trucks and truck combinations on the ni rural highways in 1949, empties inclu weighed 50,000 pounds or more. This

Table 7.-Percentage of vehicle-miles of travel, percentage loaded, average carried load, and percentage of total ton-miles carriea) rarious types of trucks and truck combinations on main rural roads in 1949 compared to that in corresponding months of 1948

Vehicle type	Percentage of ve-hicle-miles of trave]		$\begin{aligned} & \text { Percentage } \\ & \text { loaded } \end{aligned}$		Average carried load		Percentage of tonmiles carried		Distribution by type of operation in 1949									
			Percentageloaded	Average carried load		Percentage of to miles carried												
	1949	1948			1949	1948			1949	1948	1949	1948	Private	For-hire	Private	For-hire	Private	For-h
Single-unit trucks:													Tons	Tons				
Other 2-axle, 4 tire	31. 55	28.90 3.59	35.9 49.4	36.7 51.9	$\begin{aligned} & 0.64 \\ & .78 \\ & \hline .71 \end{aligned}$	$\begin{aligned} & 0.64 \\ & 1.24 \end{aligned}$	2. 75 .50	2.60 .88	35.72 49.39	48. 13 47.75	$\begin{array}{r} 0.63 \\ .74 \end{array}$	1. 2.42	5.45 .96					
Other 2-axle, 6-tire	35. 34	38.66 1.70	54.5 54.8	53.6	3. 17	3. 10	23.15	24. 51	54.40	55. 40	3. 06	3. 82	39. 28					
All single-unit trucks	71. 93	72.85	54.8 46.1	55.2 46.8	7. 23 2.29	6. 57 2. 33	2. 38 28.78	$\begin{array}{r} 2.35 \\ 30.34 \end{array}$	53.44 45.30	58.09 55.05	7.11 2.10	$\begin{aligned} & 7.52 \\ & 3.97 \end{aligned}$	$\begin{array}{r} \text { 3. } 33 \\ \text { 49. } 02 \end{array}$	9.1				
Truck combinations:																		
Truck-tractor and semitrailer Truck and trailer	26.57 1.50	25.35 1.80	65.8 63.4	66.2 70.2	9.95 14.69	9.83	65. 91	63. 09	61.11	68.98	9. 39	10. 27	47.98					
All truck combinations.	28.07	27.15	63.8 65.7	66.5		$\begin{aligned} & 13.64 \\ & 10.10 \end{aligned}$	71. 22	$\begin{array}{r} 6.57 \\ 69.66 \end{array}$	$\begin{aligned} & 63.60 \\ & 61.24 \end{aligned}$	63.24 68.67	10.08 9.43		$\begin{array}{r} 3.00 \\ 50.98 \end{array}$	$7 .$				
All trucks and truck combinations.	100.00	100.00	51.6	52.2	5.11	5.02	100.00	100. 60	47. 63	65.07	3. 48	9. 16	100.00	100.				

Figure 7.-Number of heavy gross weights per 1,000 trucks and truck combinations (empties included) in the summers of 1942-49 and a prewar year.
yncy is the same as was found in 1948 but Eslightly lower than the 1946 figure of 104 (each 1,000 in this heavy category. These hivy vehicles are almost entirely of the comb.ation type, approximately 40 percent of all nbinations observed, or about 52 percent of t: loaded ones, weighing 50,000 pounds or nre. In the East South Central region these buvy gross weights were about one-fifteenth a frequent as in the Pacific region, while in t: New England, South Atlantic, and West Eith Central regions the heavy weights were 0 -fifth as frequent as in the Pacific region.

Frequency of Heavy Axle Loads

Figure 8 shows the frequency of axle loads c 18,000 pounds or more, of 20,000 pounds (more, and of 22,000 pounds or more, by : ars from the prewar years $(1936-37)$ to 49. The frequency of heavy axle loads irreased year by year from the prewar period 1rough 1948. The frequencies for 1949 are ightly lower than those found in the previous : ar, yet are higher than in any other previous riod and fit very closely the long-time trend :om 1942 through 1947. Axle loads in excess - 22,000 pounds increased in frequency from per 1,000 vehicles in the prewar period to ' per 1,000 vehicles in 1949 , an increase of

750 percent. Somewhat lesser increases occurred in the frequencies of axle loads from 18,000 to 20,000 pounds. The decline in heavy axle loads in all the categories from 1948 to 1949 , coupled with the decline in frequency of the heaviest gross loads shown in figure 7, may possibly indicate that increased enforcement activity is being reflected in better law observance. One year's reversal in trend is insufficient to warrant conclusions. The 1950 survey results should show whether the trend will continue downward from 1948 or resume the steady upward course followed prior to that year.

Table 9 gives data concerning the number of heavy axle loads per 1,000 loaded and empty trucks and truck combinations of various types on the main rural roads in the summer of 1949. Since no panel or pickup trucks were found with axles weighing 18,000 pounds or more, there is no entry for these in the table, though they are included in figuring the frequencies for all trucks and truck combinations.

Though the greatest frequency of heavy gross weights is in the Pacific region, as shown in table 8, the lowest frequency of heavy axle loads is in this same region. The greatest frequency is in the Middle Atlantic region and
the next greatest in New England. In these two regions the relatively high frequency is attributable mainly to the large number of two-axle truck-tractors pulling one-axle or two-axle semitrailers. The relative infrequency of heavy axles in the Pacific region, in the presence of a large proportion of heavy gross loads, indicates a better distribution of the loads over a larger number of axles.

Loads Above Legal Limits

Table 10^{6} shows the number of trucks and truck combinations of each type, per 1,000 such vehicles counted, empties included, that exceeded the permissible axle, axle-group, or gross-weight legal limits in effect in the individual States in the summer of 1949 , and the number per 1,000 that exceeded these limits by various percentages. Loads in excess of the State legal limits were most frequent, as in 1948, in the East North Central region where it was found that 63 of each 1,000 vehicles exceeded a State weight limit. The Middle Atlantic region stood second in frequency of violations, with 59 vehicles out of each 1,000 exceeding a load limit, followed closely by the Mountain region with 58 violations per 1,000 vehicles.

A comparison of the frequency of loads exceeding State legal limits in 1949, shown in table 10, with similar data collected in the previous year, indicates that these excessive loads have decreased in all areas except the Mountain and Pacific regions. In the Mountain region the frequency increased 45 percent, while in the Pacific region the increase was about 9 percent. For the country as a whole, excessive loads in 1949 were slightly less frequent than in 1948 but slightly more than in 1947. No panel or pickup truck was weighed that exceeded any of the State weight regulations and this classification is omitted from the tables although the number of such vehicles counted is included in the calculations.

Recommended Weight Limits

Uniform regulations concerning maximum allowable gross weights, axle weights, and axle-group weights have been adopted as a policy by the American Association of State Highway Officials and recommended to the State governments for adoption. ${ }^{7}$ This policy recommends that no axle shall carry a load in excess of 18,000 pounds and no group of axles shall carry a load in excess of amounts specified in a table of permissible weights based on the distance between the extremes of any group of axles.

In table 11 is shown the number of axles per 1,000 vehicles of various types that exceeded the axle-load limit of 18,000 pounds recommended by the A.A.S.I.O. and the number exceeding these limits by various percentages.

[^2]Table 8.-Heavy gross weights per 1,000 loaded and empty trucks and truck combinations on main rural roads, summer of 1949

Vehicle type ${ }^{1}$	Eastern regions				Central regions					Western regions			United States average
	New Eng. land	Middle Atlantic	South Atlan- tic	A verage	East North Central	East Central	West North Central	West South Central	Average	$\begin{gathered} \text { Moun- } \\ \text { tain } \end{gathered}$	Pacific	Average	
Number Per 1,000 Weighing 30,000 Pounds or More													
Single-unit trucks:													
$\underset{\substack{\text { 2-axle, } \\ 3 \text {-axle }}}{6 \text {-tire... }}$	16 286	19 371	3 245	11 309	(2)	(2) 298	${ }^{(2)}$	231	1 229	6 206	(3)	207	253
A verage	16	$\stackrel{2}{2}$	- 8	14	${ }^{2} 6$	298 3	3	3	4	7	14	10	8
Truck combinations:													
Truck-tractor and semitrailer Truck and trailer	${ }^{475}$	${ }_{\text {(3) }} 59$	${ }_{\text {(3) }}$	539	789	0	82	$\begin{array}{r}434 \\ 53 \\ \hline\end{array}$	495	783	722	739	${ }_{5}^{657}$
A verage........	476	596	498	540	534	457	502	424	492	613	668	647	528
A verage, all trucks and truck combinations...--...--.... 117		191	130	153	208	87	139	107	144	118	176	147	148
Number Per 1,000 Weighing 40,000 Pounds or More													
3-axle	137	157	40	107	34	0	14	112	38	69	12	28	61
Truck combinations: Truck-tractor and semitrailer				332									
Truck and trailor.-.-...-----	(3)	${ }_{(3)}$	${ }^{285}$		512	189	67	31	323	461	523	506	448
A verage....-.-	289	391	285	333	274	189	285	215	252	397	494	456	305
A verage, all trucks and truck combinations...-...---...-- 66		120	71	90	105	36	77	54	73	75	121	97	82
Number Per 1,000 Weighing 50,000 Pounds or More													
2-axle, 6-tire 3 -sxale	0 6	$\stackrel{0}{15}$	0 4	${ }_{9}^{0}$	21	0	0	0	${ }_{10}^{0}$	(2) ${ }^{(4)}$	0 2	${ }^{(2)}$	(2)
A verage...-	(2)	1	${ }^{(2)}$	(2)	1	0	0	0	(8)	(2)	(9)	(3)	(9)
Truck combinations:													
Truek and thailer......-------	0	(8)	(3)		455	0	31	10	278	381	470	446	392
A verage.	69	171	87	123	125	28	120	74	100	271	409	356	141
A verage all trucks and truck combinations	15	52	21	33	48	6	32	18	29	51	99	75	36

: No two-axle, four-tire trucks weighing as much as 30,000 pounds were reported.
${ }^{2}$ Less than 5 per 10,000 .
郎
Table 9.-Heavy axle loads per 1,000 loaded and empty trucks and truck combinations on main rural roads in the summer of 194s.

Vehicle type ${ }^{\text {1 }}$	Eastern regions				Central regions					Western regions			Unite State avera	
	New England	Middle Atlantic	South At- lantic	Average	East North Central	$\begin{gathered} \text { East } \\ \text { South } \\ \text { Central } \end{gathered}$	West North Central	$\begin{gathered} \text { West } \\ \text { South } \\ \text { Central } \end{gathered}$	A verage	Mountain	Pacific	A verage		
Number Per 1,000 Weighing 18,000 Pounds or More														
Single-unit trucks:														
${ }_{2}^{2-a x l e}$-axle, 4 -tire 6 -tive . .	${ }_{46}$	2 58	${ }_{23}^{2}$	2 40	0	0	0	0	0	${ }^{0}$	0	0		
2-axle, 6-tive....	- 416	58 169	23 55	40 116	10 67	18 33	11	11 56	48	34 71	14	24	23 67	
Truck-tractor and semitrailer.	${ }^{471}$	${ }_{(2)}^{566}$	361	462	${ }_{2}^{206}$	238	179	198	203	252	147	192	290	
Average-.....	468	567	361	462	223	237	175	193	208	239	135	175	286	
Average, all trucks and truck combinations.	124	195	99	140	89	50	50	51	63	57	37	48	86	
Number Per 1,000 Weighing 20,000 Pounds or More														
2-axle, 4 -tire....	0 27	${ }_{36}$	0 9	${ }_{23}^{0}$	0 4	0	0 2	0 3	0 3	$\begin{array}{r}18 \\ \hline\end{array}$	0 3	0 10	${ }_{11}$	
3-axle....----	40	69	27	48	32	0	0	0	15	58	0	16	2	
Truck combinations:														
Truck-tractor and semitrailer..	281	341	172	257	60	86	42	72	62	113	28	64		
Truck and trailer.........-- A verage.-.-.---	080	$\begin{gathered} (2) \\ 344 \end{gathered}$	0 172	257	211 67	0 86	14	0 7	128	$\begin{array}{r}14 \\ 49 \\ \hline 9\end{array}$	8	18	${ }^{61}$	
Average, all trucks and truck combinations.....-.---.-.--- 73		118	46	78	27	18	12	18	20	26	6	16	3ε	
Number Per 1,000 Weighing 22,000 Pounds or More														
Single-unit trucks:														
	16	17	0 4	${ }_{11}^{0}$	0	0 2	0 1	0	0 1	0 9	0	0 5	1	
3-axle ..	0 9	12	S	17	29	0	0	0	14	24	0	7	$1{ }^{\text {i }}$	
Truck-tractor and semuitrailer..	120	193	6,6	127	19	22	8				5			
Truck and trailer			0	0	91	0	12	0	57	23	4	9	2	
					22		8	23	20	41	5	19	5.	
A \%erace, all trucks and truek combinations.	33	65	18	39	9	5	3	6	6	11	2	6	1	

${ }^{1}$ No panel or pick-up trucks with an 18,000 -pound axle load were reported.
${ }^{2}$ Data omitted because of insufficient sample.

T's table emphasizes again the high freqiacy of heavy axle loads in the Middle A untic and New England regions. The ninber of axles per 1,000 vehicles weighing me than the recommended limits was 175 in Middle Atlantic and 109 in the New Eyland regions, while only 31 such axles for ert 1,000 vehicles were found in the Pacific retion. For the United States as a whole a: 3 loads heavier than 18,000 pounds were aiut 12 percent less frequent in 1949 than in 18 , although almost 14 percent more freq :nt than in 1947.
[able 12 shows the number of vehicles of ∇ 'ious types per 1,000 with an axle-group icd in excess of the limits recommended by t): A.A.S.H.O. and in excess of these limits b various percentages. For the country as a.whole, of each 1,000 loaded and empty t.cks and truck combinations, 28 had axlegrup loads ${ }^{8}$ weighing in excess of the recomr:nded limits, 7 of which exceeded the limits k more than 20 percent. Of each 1,000 cabinations weighed, 98 had axle-group 1 ds weighing more than the recommended 1 lits, of which 24 exceeded the limits by more tan 20 percent. The frequency of the écessive axle-group loads in 1949 was about 7 percent less than in 1948 and 12 percent qove the 1947 frequency.
As might be expected, many vehicles were \& loaded that they exceeded more than one jcommended weight limit, and some vehicles - 3.d more than one axle loaded in excess of fe recommended limit. Counting each vehia only once, regardless of the number , ways in which it exceeded any of the A.S.H.O. recommended limits, table 13 as derived to show the number of vehicles ir 1,000 of each type, both loaded and apty, that exceeded the limits by various rrcentages. Those vehicles which exceeded ore than one provision of the recommended strictions were tabulated in the column lowing the highest percentage excess only \therefore any item.
In the United States as a whole, 68 vehicles ut of every 1,000 were overloaded to some egree, and 19 out of every 1,000 exceeded ome one of the provisions by more than 20 ercent. The frequency of vehicles exceeding - ae recommendations by any amount in 1949 ras 7 percent less than in 1948 and about 15 ercent greater than in 1947.
In considering the data concerning the requencies of axles or vehicles exceeding the itate legal limits and the A.A.S.H.O. recomneadations, especially the frequencies in the Middle Atlantic and New England regions, he fact should be recognized that higher imits generally are permissible under the itate laws in this area than are recommended sy the Association. Axles exceeding the recomnended limits by 25 percent may be within

[^3]

Figure 8.-Number of heavy axle loads per 1,000 trucks and truck combinations (empties included) in the summers of 1942-49 and a prewar year.
the legal limits of certain States, particularly in these two regions. Some States have no axle limits or axle-group limits in their motorvehicle restrictions, a fact that complicates direct comparison of excess weights based on law and those based on the recommendations. Comparison of the frequency data given in table 13 with those in table 10 shows that from one-third to one-half of the vehicles exceeding one or more of the Association recommendations actually exceeded a State legal limit.

For-Hire Vehicles More Frequently Overloaded

The first part of table 14 shows the number of privately operated trucks and truck combinations and those operated for-hire, for each 1,000 such loaded and empty vehicles, on main rural roads of the United States, that exceeded some State legal weight limit in 1949. A comparison of the frequency of the excessively loaded vehicles in the two operation classifications shows, in a striking manner, that type by type, the for-hire vehicles generally are more frequently overloaded than are the privately operated ones.

For instance, 6 of each 1,000 private singleunit trucks exceeded a State weight limit while 27 of each 1,000 for-hire trucks exceeded the same limits. Likewise, 146 of each 1,000 private truck combinations exceeded State weight limits, while 168 of each 1,000 for-hire combinations exceeded the same limits.

Of each 1,000 vehicles, the frequencies of all private and all for-hire trucks and truck combinations exceeding the State limits were 26 and 131 , respectively. In other words, there were five times as many excess loads among the for-hire vehicles as among the privately operated ones. This is as would be expected, because the heavier vehicles are operated more frequently for-hire and the lighter ones for private transportation.

The following parts of table 14 show frequencies of private and for-hire trucks and truck combinations exceeding the A.A.S.H.O. recommended limits for axle loads, for maximum axle-group loads, or for any of the recommended maximum loads. This table shows, in general, that the relation of the frequency of overload of privately operated and of for-hire vehicles is the same when based on A.A.S.H.O. recommendations or on State legal limits.

Table 10. Number of trucks and truck combinations, per 1,000 loaded and empty vehicles, that exceeded the permissible axle, axle-group, or gross-weight legal limits in effect in the States by various percentages (maximum) of overload, summer of 1949

Region and type of vehicle (panel and pickup trucks excluded)	Number per 1,000 overloaded	Number per 1,000 overloaded more than-				
		5 percent	10 percent	20 percent	30 percent	50 percent
New England: 2-axle, 4-tire 2-axle, 6-tire 3-axle. Average, single-unit trucks Truck-tractor and semitrailer. Truck and trailer A verage, truck combinations. Average, all trucks and com- binations						
	15	12		4	1	(1)
	85	76	57	11	6	(1)
	10	8	5	2	1	(1)
	91	53	34	12	5	
	91	53	34	12	5	1
	91 28	18	11	12	2	(1)
Middle Atlantic:						
2 -axle, 4 -tire			9	3		(1)
${ }_{3-\text { axle }}^{2 \text {-axle, }}$ 6-tire	21	13 178	9 115	66	28	(1)
3 -axle Average, single-unit trucks	209 18	178 13	115 9	66 4 4	1.	(1)
Truck-tractor and semitrailer--	147	102	73	38	24	6
Truck and trailer ...	${ }^{(2)}$	${ }^{(2)}$	${ }^{(2)} 75$	38	24	6
Average, truck combinations- Average, all trucks and com-	149	104	75	38	24	6
binations-----...........--	59	42	30	15	8	2
South Atlantic:						
2-axie, 4-tire	14	10	7	1	i	(1)
3-axle ${ }_{\text {2-axle }}$ 6-tire	41	27	11	8		
A verage, single-unit trucks.-	8	6	4		(1)	(1)
Truck-tractor and semitrailer --	169	110	70	24	11	1
Truck and trailer.. A verage, truck combinations.	169	110	70	24	11	1-
Average, all trucks and combinations.	53	35	22	7	7	(1)
East North Central:						
2 -axle, 4 -tire						
2-axle, 6-tire	7	5 6	66	43	29	20
3-axle A verage, single-unit trucks	72 5	69 4	$\stackrel{3}{3}$	2	1	(1)
Truck-tractor and semitrailer.-	156	106	65	28	13	2
Truck and trailer.	316	226	117	98	40	25
A verage, truck combinations.	163	112	70	31	14	3
Average, all trucks and combinations. .	63	43	27	13	6	1
East South Central:						
2-axle, 4-tire	9	9	4	4	1	
2-axle, 6 -tire	13	43	11			
	${ }^{6}$	4	2	1	1	
Truck-tractor and semitrailer.-	162	118	81	26	9	1
Truck and trailer--	162	118	81	26	9	1
Average, truck combinations- A verage, all trucks and com-						
binations.	36	25	17	6	2	(1)
West North Central:						
2-axle, 4-tire			1	1		----
2-axle, 6 -tir	56	37	24	8	---	
A verage, single-unit trucks.-	5	${ }_{2}$	1	1		
Truck-tractor and semitrailer -	179	123	76	29	12	1
Truck and trailer	20	16	8	6		
A verage, truck combinations.	173	119	74	28	12	1
A perage, all trucks and combinations.	46	30	19	8	3	(1)
West South Central:						
2-axle, 4-tire					---	--.-
2 -axle, 6 -tire	10	7	4	1	: --	
3-axle -....---......ine	4	3	2	(1)		
Truck-tractor and semitrailer.-	153	115	76	31	11	5
Truck and trailer	10	10				
A verage, truck combinations.	149	112	74	30	11	5
A verage, all trucks and combinations	42	31	21	8	3	1
Mountain:						
2-axle, 4-tire	2	2	2	2	2	
2 -axle, 6 -tire	34	31	19	11	7	(-)
3 -axle .-	63	55	48	38	34	
A rerage single-unit trucks --	15	13	8	5	4	(1)
Truck-tractor and semitrailer.-	215	167	120	64	27	5
Truck and trailer	233	179	121	69	25	15
A verage, truck combinations-	218	169	120	65	27	7
Averace, all trucks and combinations	58	46	32	18	9	1
Pacific:						
2-axle, 4 -tire 2-ayle, 6 -tire		4	2	1	1	1
	18	4	1	(1)	1	
A verage, single-unit trucks.-	18	2	1	(1)	(1)	(1)
Truek-tractor and semitrailer.-	116	63	36	9	3	(1)
Truck and trailer..........	171	50	16	2		
A verage, truck combinations- A rerace, all trucks and com-	133	59	30	7	2	(1)
A verame, all trucks and combinations.	49	22	11	2	1	(1)
United Statos average: 2-arle, 4-tire \qquad 2-axle, 6-tire \qquad 3 -axle A verage, single-unit trucks Truck-tractor and semitrailer Truck and traller A verage, truck combinations Average, all trucks and combinations						
	1	9	1	(1)	(1)	
	13	9	6	2	1	(1)
	75	61	42	24	13	4
	8	6	4	2	1	(1)
	158	109	71	29	13	3
	193 160	107 109	71	33 29	12	8 3
	51	35	23	10	4	1
A verage, 1948A wrare. 1947	55	38	26	12	6	
	46	34	23	10	4	1

' Less than 5 per 10,000.

- Data omitted because of insufficient sample.

Table 11.-Number of axles, per 1,000 loaded and empty tru and truck combinations, that exceeded the permissible a
load limit of 18,000 pounds recommended by the A.A.S.H.O. various percentages of overload in the summer of 1949

Region and type of vehicle (panel and pickup trucks excluded)	Numberper 1,000 loaded	Number per 1,000 overloaded mort than-											
		$\begin{aligned} & 5 \text { per- } \\ & \text { cent } \end{aligned}$	$\begin{gathered} 10 \mathrm{per}- \\ \mathrm{cent} \end{gathered}$	20 percent	30 percent	$\begin{array}{r} 50 \mathrm{pe} \\ \text { cen } \end{array}$							
New England: \qquad 2-axle, 6 -tire 3 -axle A verage, single-unit trucks Truck-tractor and semitrailer. Truck and trailer A verage, truck combinations... A verage, all trucks and combinations.													
	44	35	30	19	11	3							
	91	46	33										
	26	20	17	10	6	2							
	403	337	259	118	44	4							
	${ }_{408}$	(1) 343	${ }_{261}$										
	408 109	343 90	261 70	117 33	44 14	2							
Middle Atlantic:													
2-axle, 4-tire		1											
2 -axle, 6 -tire-	54	47	40	21	9	2							
3-axle-.-.-..---...-.-.	175 36	129 30	70 24	35 13	$\stackrel{21}{6}$	7							
Average, single-unit trucks Truck-tractor and semitrailer	36 480	30 384	24 312	13 177	6 89	24							
Truck and trailer	(1)	(1)	(1)	(1)									
Average, truck combinations--	481	385	313	177	89	24							
A verage, all trucks and combinations.	175	141	115	64	32	8							
South Atlantic:													
2-axle, 4-tire	1	1	1										
2-axle, 6-tire	17	13	9	3	2	${ }^{(2)}$							
A-axle Arage, single-unit trucks	10	7	5	${ }_{2}$	1	(2)							
Truck-tractor and semitrailer.	299	229	160	62	21	3							
Truck and trailer...													
A verage, truck combinations.-	299	229	160	62	21	3							
A verage, all trucks and combinations.	90	68	48	19	7	1							
East North Central:													
2-axle, 4-tire													
2 -axle, 6 -tire	7	5	3	1									
3-axle	34	34	31	28	20								
A verage, single-unit trucks	5 165	${ }_{3}^{3}$	${ }_{6}{ }^{2}$	${ }_{2}^{1}$	${ }_{8}^{1}$	1							
Truck and trailer	406	247	151	63	17								
A verage, truck combinations.-	176	111	64	24	8	1							
A verage, all trucks and combina-													
East South Central:													
2 -axle, 6 -tire	13	7	4	2	1								
3-axle....----	33	11											
A verage, single-unit trucks	7	4	2	1	1								
Truck and trailer.....													
A verage, truck combinations--	191	131	79	22	7	1							
Average, all trucks and combina-	41	28	16	5	2	(2)							
West North Central:													
2-axle, 4-tire.													
2 -axle, 6 -tire	7	2	1	${ }^{(2)}$	---								
3-axle......-	21	10	2	2									
A verage, single-unit trucks.	4	1	1	${ }^{(2)}$									
Truck-tractor and semitrailer.	168	94	51	14	5	1							
Truck and trailer	9	9	5	4									
Average, truck combinations--	162	91	49	14	5	1							
A verage, all trucks and combina- tions	42	23	13	3	1	(3)							
West South Central:													
2-axle, 4-tire -				\therefore									
2-axle, 6 -tire	10	7	4	1	--.								
3-axle........													
A verage, single-unit trucks	4	3	2	${ }^{(2)}$									
Truck-tractor and semitrailer	180	122	73	27	11	2							
Truck and trailer.	10	10											
Average, truck combinations --	175	119	71	26	11	2							
Average, all trucks and combina-	49	33	20	7	3	1							
Mountain:													
2-axle, 4-tire.	2	2	2	2	2								
2 -axle, 6 -tire	33	31	19	11	7	(2)							
3 -axle	67	67	67	27	13								
A verage, single-unit trucks	14	14	9	5	3	(2)							
Truck-tractor and semitrailer .-.	216	158	112	51	21	4							
Truck and trailer.	132	75	39	15	7	2							
A verage, truck combinations--	201	143	99	44	18	4							
A verage, all trucks and combina-	5	1	8	1		1							
Pacific:													
3 -axle. A verage, single-unit trucks Truck-tractor and semitrailer .-.	2												
	3	2	1	(2)	(2)	(2)							
	70	37	16	3	1	(2)							
Truck and trailer-.-.--	113	40	12	2	(2)								
	83	38	14	3	1	(2)							
A verage, all trucks and combinstions.													
	United States average:												
2-axle, 6-tire	57	43	28	14		1							
A verage, single-unit trucks.-.--Truck-tractor and semitrailer	11	8	6	3	2	(3)							
	242	175	122	55	24	5							
Truck-tractor and semitrailer....	168	92	50	17	,	(3)							
A verage, truck combinations--A verage, all trucks and combina-tions	238	171	118	53	23	5							
	75	54	37	17	8	1							
A verage, 1948 A verage, 1947	85 68	63 40 4	45 37	$\begin{aligned} & 23 \\ & 1.5 \\ & \hline \end{aligned}$	11	$\stackrel{2}{1}$							

${ }^{1}$ Data omitted because of insufficient sample. ${ }^{2}$ Less than 5 per 10,000.

Whe 12.- Number of trucks and truck combinations, per 1,000 oaded and empty vehicles, that exceeded the permissible axlerot:p loads recommended by the A.A.S.I.O. by various perentages of overload in the summer of 1949

Table 13.-Number of trucks and truck combinations, per 1,000 loaded and empty vehicles, that exceeded any of the permissible load limits recommended by the A.A.S.II.O. by various percentages (maximum) of overlond in the summer of 19.19

Region and type of vehicle (pancl and pickup trucks excluded)	Numberper1,000over-loaded	Number per 1,000 overloaded more than-					
		$\begin{aligned} & 5 \text { per- } \\ & \text { cent } \end{aligned}$	10 percent	20 percent	30 per-	50 percent	
New England: 2-axle, 4-tire 2-axle, 6-tire 3-axle A verage, single-unit trucks Truck-tractor and semitrailer. Truck and trailer. Average, truck combinations Average, all trucks and combinations							
	44	36	30	19	11	3	
	119	86	57	24	6		
	26 288	21 250	17 203	11 108	45	2 4	
	(1)	(1)	(1)	(1)	(1)		
	290	252	206	111	48	4	
	84	71	58	33	15	2	
Middle Atlantic:							
2-axle, 4-tire	1						
${ }_{3-\text { axle }}^{\text {2-axle, } 6 \text {-tire }}$	$\begin{array}{r}54 \\ 181 \\ \hline\end{array}$	47	40	21	1	2	
Average, single-unit truck	181 36	149 31	112	13	6	1	
Truck-tractor and semitrailer.	345	284	244	153	85	26	
Truck and trailer-	(1)	(1)	(1)	(1)			
Average, truck combinations-	346	285	245	153	85	26	
Average, all trucks and combinations.	133	111	95	57	31	9	
South Atlantic:							
2-axle, 4-tire	1	1	1				
${ }_{3}^{2-a x l e, ~} 6$-tire	17 66	$\begin{array}{r}13 \\ 37 \\ \hline\end{array}$	9	3 14	$\stackrel{2}{8}$	${ }^{(2)}$	
3-axle. A verage, single-unit trucks..	66 10	37 7	24 5	14 2	8	(2)	
Truck-tractor and semitrailer..	229	182	138	64	26	4	
Truck and trailer-							
Average, truck combinations. Average, all trucks and com-	229	182	138	64	26	4	
binations	71	55	42	19	8	1	
East North Central:							
${ }_{2}$-axle, 6 -tire	7	5	3	1			
3 -axle	56	43	43	38	29	10	
Averase, single-unit trucks	5		3	1	1	$\left.{ }^{2}\right)$	
Truck-tractor and semitrailer.	180	133	86	39	18	3	
Truck and trailer.	425	414	381	293	191	56	
A verage, truck combinations.	191	146	100	51	26	6	
Average, all trucks and combinations	73	56	38	19	10	2	
East South Central:							
2-axle, 4-tire		9	4	4	4		
2-axle, 6 -tire	13	11	4	2	1		
3-axle. Average, single-unit truck	33	11	2	1	1		
Truck-tractor and semitrailer	151	111	74	22	8	1	
Truck and trailer--							
Average, truck combinations	151	111	74	22	8	1	
Average, all trucks and com- binations.	35	24	15	5	2	(2)	
West North Central:							
2-axle, 4-tire						-----	
2-3xle, 6-tire.		2	10				
3-axle-------		17	10	1			
A verage, single-unit trucks Truck-tractor and semitrailer.	172	112	65	20	8	1	
Truck and trailer	16	8	8	6			
A verage, truck combinations.	167	108	63	20	8	1	
A verage, all trucks and combinations.	44	27	16	6	2	$\left.{ }^{2}\right)$	
West South Central: ${ }^{\text {a }}$							
2-axle, 4 -tire							
2 -axle, 6 -tire	10	7	4	1	--...		
3-axle....................				(2)			
A verage, single-unit trucks	149	113	73	30	12	3	
Truck and trailer.	10	10	10		10		
Average, truck combinations	145	110	72	29	12	3	
A verage, all trucks and com-	41	31	20	8	3	1	
Mountain:							
2 -axle, 6-tire	34	31	19	11	7	(2)	
3 -axle...	63	60	48	34	24		
A verage, single-unit trucks	15	13	8	5	3		
Truck-tractor and semitrailer	233	185	139	74	35	6	
Truck and trailer		198					
A verage, truck combinations.	238	187	138	71	34	8	
A verage, all trucks and combinations	62	50	36	18	10	2	
Pacific:							
${ }_{2}^{2-a x l e, ~ 4-t i r e ~}$				1	1	- 1	
${ }_{3}^{2}$-axle, 6 -tire			(2) ${ }^{2}$	1	1	1	
Average, single-unit trucks.	4	2		(2)	(2)	(2)	
Truck-tractor and semitrailer.	166	127	80	22		1	
Truck and trailer...-...........	299	212	83	7			
A verage, truck combinations.	207	153	81	17	4	1	
A verage, all trucks and combinations	75	55	29	6	1	(3)	
United States average:							
2-axle, 4-tire -		1	11	${ }^{(2)}{ }_{6}$			
	19	15	11	$\stackrel{6}{6}$	12	3	
3-axle, 6-tire -axle. A verage, single-unit truck	11	9	${ }_{6}$	${ }_{3}$	2	(2)	
Truck-tractor and semitrailerTruck and trailer.	210	162	119	58	28	6	
	281	227	148	75	46	14	
A verage, truck combinations.	- 214	165	121	59	29	6	
Average, all trucks and combinations		53	38	19	10	2	
	- 68						
A verage, 1948 A verage 1947	73	56	42	23	1	3	
	- 59	5	32	15	7	1	

${ }^{1}$ Data omitted because of insufficient sample.
${ }^{2}$ Less than 5 per 10,000 .

Table 14.-Number of trucks and truck combinations per 1,000 loaded and empty vehicles, in private and in for-hire operation, t exceeded various load limits by various percentages of overload in the summer of 1949 (U. S. average)

Number of Trucks and Truck Combinations per 1,000 Exceeding Permissible Axle, Axle-Group, or Gross-Weight Legal Limits of the Several States

Number of Axles per 1,000 Trucks and Truck Combinations Exceeding the 18,000 -pound Limit Recommended by the A. A. S. H. O.

Number of Trucks and Truck Combinations per 1,000 Exceeding the Maximum Axle-Group Loads Recommended by the A. A. S. H. O.

Number of Truces and Truck Combinations per 1,000 Exceeding any of the Maximum Motor-Vehicle Loads Recommended by the A. A. S. H. O.

1 Less than 5 per 10,000.

Report of Trends in Motor-Vehicle Travel Discontinued

For several years past, Public Roads has annually carried a companion article, Trends in motor-vehicle travel, which provided estimates of total urban and rural travel and average unit travel and fuel consumption of each of the major classes of motor vehicles.

In making these estimates it has been necessary to predicate the estimates of a given year on the sequence of values obtained for previous years, with the 1936-37 period of the comprehensive State-wide traffic surveys as a base. As this base period has become more and
more remote the hazards of the procedure have multiplied. ${ }^{1}$

The interval of nearly 15 years and the changes in circumstances affecting travel are so great that the estimates can no longer be published with confidence. It is hoped that they can be resumed when the States have accumulated a sufficient body of current basic data.

[^4] materials as pozzolanic, slag, and nat cements which cannot be analyzed accurs by the tentative method for portland cemit

A further application of this method w be for limestone or other calcareous mat even though certain types may be , pletely soluble in mineral acid. By usink J. Lawrence Smith fusion on such matel the eventual calcium in solution would $\mathrm{b}_{\mathrm{t}} \mathrm{F}^{2}$ same as that obtained for the siliceous sam Thus, no previous knowledge of the cal content of the sample would be required the same correction curves would be applic.

lame-Photometer Determination of odium and Potassium in Soils nd Other Siliceous Materials

THE PHYSICAL
SEARCH BRANCH
REAU OF PUBLIC ROADS

Reported by W. J. Halstead, Chemist, and Bernard Chaiken, Associate Chemist

RAVIMETRIC METHODS for determining the alkalies-sodium, lithium, and ıssium-are long and tedious. The lengthy -ations required may introduce serious erunless meticulous care is observed ughout the entire procedure. For this on, there has long been much effort died toward developing an alternate prore for the determination of these elevits. This has been accomplished by the nt developments in flame photometry. cessful and rapid flame photometric hods for the determination of sodium and cissium in such complex materials as whole id, serum, urine, fertilizers, portland ents $(1,4,7),{ }^{1}$ plant tissues $(10,11)$, soil sacts, and cation-exchange capacity of ; $(8,9)$, have been described elsewhere.
he fundamental basis of flame photometry 3 the long-known fact that all elements, n heated to a sufficiently high temperawill emit characteristic light waves of fnite wave lengths. The intensity of these Fssions varies directly with the quantity of element present. The temperature necry to cause the emissions for the various laents ranges from the extremely high He which may be obtained with an electric to the comparatively low temperature of as flame. The flame photometer is aplable to those elements which emit radiafus at the temperature of an acetylene or pane flame. Essentially, it is an instruat by which the desired element is introted into a gas flame under carefully conrled conditions, and the characteristic wave rid ${ }^{\text {s }}$ th of the element is isolated and its , a!nsity is measured photoelectrically.
'he alkali metals-lithium, sodium, and iassium-emit characteristic radiations at 1 temperature of the propane flame and ${ }^{1} b_{i}$ gas is generally used for the determinai_{1} of these elements. The flame photometer s.lso applicable to the determination of calin, strontium, barium, magnesium, man3hese, and chromium, provided a higher 6iperature flame, such as that of acetylene, 3ised.
talic numbers in parentheses refer to the bibliographic ence list on page 104.

This article presents a method for using a flame photometer to determine the alka-lies-sodium and potassium oxides-in soil and other siliceous material which cannot easily be decomposed by mineral acids. The method is much more rapid than existing gravimetric procedures, and yields results which are equally accurate.
The sample is decomposed by fusion and the melt is leached with hot water in order to bring the alkalies into solution as chlorides. The concentration of alkalies in the resulting solution is then determined by means of a flame photometer, using the direct-intensity method.

A wide variety of materials can be analyzed by the method, inctuding soils, sands, rocks, various minerals, ceramic clays, fly ash, and pozzolanic, slag, and natural cements. The method is also applicable to the determination of the alkalies in limestones and other calcareous materials.

Summary

This article describes a method for using the flame photometer to determine sodium and potassium in various siliceous materials which cannot easily be decomposed by acids. These include such materials as soils, sands, rocks, various minerals, ceramic clays, fly ash, pozzolanic cement, natural cement, and slag cement. The alkalies are brought into solution by the J. Lawrence Smith fusion method with calcium carbonate, and the melt leached with hot water as is customary. The concentrations of the sodium and potassium oxides in the resulting solution are then determined with a flame photometer, using the direct-intensity procedure. Tests show that calcium is the only interfering ion present. By careful quantitative control of the reagents and control of the amount of washings, concentration of the calcium ion can be held substantially constant at 1,700 parts per million as calcium oxide. Correction can then be made for the effect of this constituent by the use of correction curves. This makes possible the calibration against standard solutions containing only sodium and potassium chlorides, which is advantageous
since such solutions are used in a large number of other analyses.
In addition to soils, sands, various minerals, ceramic clays, fly ash, and similar siliceous materials, the flame-photometer method is applicable to the determination of the alkalies in the nonportland type cements such as pozzolanic, slag, and natural cements. While actual tests were not made, the method is indicated as also applicable to limestone and other calcareous materials. The advantage of the method for this type of material is that a neutral solution of a definite concentration of calcium oxide is obtained regardless of the calcium content of the limestone or calcareous material being analyzed.
Comparisons of the results obtained with the flame-photometer method and the results of gravimetric methods show the average differences in percentage to be less than 0.1 when 0.5 -gram samples are used. This is of the same order as differences between two gravimetric results on the same sample. The time saved by the flame-photometer method is considerable. Comparative records show that for the same number of analyses only one-fourth the time is required for the flame-photometer method (including the time for calibration) as is required by the usual gravimetric procedure.

Many features of the given flame-photometer method follow well-established procedures. However, the quantitative evaluation of the interferences from other elements and the technique of the detailed operations as given in this article should be of considerable value to those engaged in analyzing such materials or to those who may be seeking further applications of the flame photometer

Direct-Intensity Procedure

The instrument used in this study was a model 52A Perkin-Elmer flame photometer, which has been described in a number of publications (1, 7). This flame photometer can be used in either of two ways, both of which require careful calibration against standard solutions having a range of concentrations of the desired element overlapping that to be expected in the unknown samples.

These two procedures are known as the internal-standard method and the directintensity method.
In the internal-standard method, the emitted light-intensity ratio of the element sought and another element added in known amount (the internal standard) is measured. This is done by amplifying the photoelectric current resulting from the unknown until it equals that from the internal standard, the amount of amplificaion required being indicated by the reading of the gain-control dial. A basic requirement of the internal-standard method is that the element chosen as the internal standard be absent from the sample to be analyzed. The flame photometer used in this work is so equipped as to require the use of a lithium salt exclusively as the internal standard. However, this clement is often present in materials of mineral origin (5, page 517) or highly sodic rocks (12). Thus, in analyzing a wide variety of siliceous materials, the use of the internal-standard method is not desirable.
In the direct-intensity method, a measure of the absolute light-intensity of the element sought is obtained directly by the meter reading and there is no interference from lithium when present.

Method of Analysis

The method described in this article is directly concerned with those materials which are not easily or completely decomposed by mineral acids, and thus require fusion or special digestion in order to bring the alkalies completely into solution.

The familiar J. L. Smith method of fusion with calcium carbonate, as described by Hillobrand and Lundell (5, page 787), was chosen, since its use limits the metals avhich go into solution. After the fusion the melt is extracted with water in the usual manner and the resulting solution is used for the determinations of the alkalies by means of the flame photometer. The adjustment and calibration of the apparatus follow closely the directions given in the tentative method of test for sodium oxide and potassium oxide in portland cement by flame photometry of the American Society for Testing Materials (1), the chief differences being that the standard solutions used in this method contain only sodium and potassium chloride, and the zero adjustment is made with distilled water.

By careful control of the weights of the sample and the reagents, and of the volume of wash water used, it was found that the amount of calcium in solution could be held substantially constant, and thus the results could be corrected for any interference resulting from this element.

In order to present a complete picture, the method of test, including the calibration of the instrument, the determination of the correction curve, and the preparation of the sample, is given here in detailed step-by-step procedure.

1. Reagents

(a) Calcium carbonate: A.C.S. "low-alkali" CaCO_{3}, limited to 0.02 percent total aikalies as sulfate.
(b) Sodium chloride: A.C.S. NaCl with a
maximum limit of 0.01 percent potassium.
(c) Potassium chloride: A.C.S. KCl with a maximum limit of 0.02 percent sodium.
(d) Ammonium chloride: Reagent grade A.C.S. $\mathrm{NH}_{4} \mathrm{Cl}$.
(e) Brom-thymol blue indicator: 0.04 percent solution in water.
(f) Water: Distilled water.

2. Solutions

(a) Sodium-potassium chloride stock solu-tion.-Prepare a solution containing 1.8858 gm . of NaCl and 1.5830 gm . of KCl (previously dried at $105^{\circ} \mathrm{C}$. for several hours) dissolved in water and diluted to 1 liter in a volumetric flask. This solution contains the equivalent of 1,000 p.p.m. (parts per million) each of $\mathrm{Na}_{2} \mathrm{O}$ and $\mathrm{K}_{2} \mathrm{O}$.
(b) Calcium chloride stock solution.-Prepare a solution containing 6.068 gm . of CaCO_{3} per liter as follows: Weigh the CaCO_{3} into a large beaker. Add sufficient water to form a slurry and then add concentrated HCl cautiously until the CaCO_{3} is dissolved. Avoid any excess of HCl by adding the acid drop by drop with vigorous stirring until the solution just clears. Cool the solution to room temperature and filter into a $1,000-\mathrm{ml}$. volumetric flask. Dilute to the mark and mix thoroughly. This solution contains the equivalent of 3,400 p.p.m. of CaO .
(c) Standard sodium-potassium chloride solu-tions.-Using the $\mathrm{NaCl}-\mathrm{KCl}$ stock solution, prepare standard solutions containing the equivalent of $5,20,40,60,80$, and 100 p.p.m. each of $\mathrm{Na}_{2} \mathrm{O}$ and $\mathrm{K}_{2} \mathrm{O}$. Store these solutions in acid-resistant glass bottles with ground-glass or rubber stoppers.
(d) Correction solutions.-Using the CaCl_{2} stock solution and the $\mathrm{NaCl}-\mathrm{KCl}$ stock solution, prepare solutions containing the equivalent of $0,5,20,40,60,80$, and 100 p.p.m. of $\mathrm{Na}_{2} \mathrm{O}$ and $\mathrm{K}_{2} \mathrm{O}$, respectively, and each containing the equivalent of $1,700 \mathrm{p} . \mathrm{p} . \mathrm{m}$. of CaO .

3. Calibration of flame photometer

(a) Turn on the instrument, adjust the air pressure to 10 p.s.i. and the propane gas pressure to 5 p.s.i. Adjust the burner so as to give a faintly visible flame 5 to 6 inches high and with $1 / 8-$ inch cones over the burner grid. These cones should be uniform, quiet, and of a blue or greenish-blue color. Allow the system to warm up for approximately 30 minutes after the current and gas are turned on.
(b) Set the internal-standard dial at zero and adjust the meter reading to zero with the zero adjustment knob.
(c) Find the correct position on the wavelength dial for the element to be determined by pouring into the atomizer a portion of the $100-$ p.p.m. standard solution of $\mathrm{Na}_{2} \mathrm{O}-\mathrm{K}_{2} \mathrm{O}$ and moving the selector slowly back and forth on each side of the indicated wave length for the element until the point of maximum deflection is noted. Set the wave-length selector at this point. The coarse and fine gain controls are used to adjust the deflections to the range of 90 to 100 .
(d) Pour the 100-p.p.m. standard solution into the atomizer and adjust the controls until the meter reading is 100 . Then pour in distilled water and adjust the zero-adjust-
ment knob until the meter reads zero. I peat these two operations until no adjustme is necessary in going from one to the other.
(e) Next pour into the atomizer the \& p.p.m. standard solution and note the me reading to the nearest whole division. ${ }^{2}$ Che the zero reading with distilled water and t 100 reading with the 100 -p.p.m. stands solution. If these readings are exactly z_{1} and within one scale division of 100 , resp tively, the reading for the $80-$ p.p.m. soluti can be considered correct. If the zero readi is not exact, or the $100-$ p.p.m. reading is I within one scale division of 100 , repeat adjustments in step 3 (d) and take anotl reading for the $80-\mathrm{p} . \mathrm{p} . \mathrm{m}$. solution. Contir until no adjustment of the zero and 100 poi: is necessary after securing the reading for 80-p.p.m. standard solution.
(f) In a similar manner, determine readings ${ }^{2}$ for the $60,40,20$, and $5-\mathrm{p} . \mathrm{p}$. standard solutions of $\mathrm{Na}_{2} \mathrm{O}-\mathrm{K}_{2} \mathrm{O}$.
(g) Plot calibration curves for each oxi using cross-section paper of such type t] each division on the ordinate represents meter reading of one unit and each divis on the abscissa represents a concentration 1 p.p.m. (see fig. 1, page 101).

4. Correction curves

(a) Using the correction solutions, termine the apparent $\mathrm{Na}_{2} \mathrm{O}$ and $\mathrm{K}_{2} \mathrm{O}$ conc tration in parts per million as directed for analysis of the samples in steps 6 and 7, w the application of the calibration curve determined in accordance with step 3 (g).
(b) To determine the reagent impurit make a blank determination, following procedure outlined in step 5 for the preps tion of the sample and in steps 6 and 7 for determination of $\mathrm{Na}_{2} \mathrm{O}$ and $\mathrm{K}_{2} \mathrm{O}$. The m1 readings obtained are converted to parts million (see step 3 g) and the latter val represent the effect of the $1,700-\mathrm{p} . \mathrm{p} . \mathrm{m}$. in addition to the reagent impurities. tract from the value for each oxide the obtained for the correction solution contair no added NaCl or KCl . These values repres the effect of the reagent impurities alone.
(c) Add the effect of the reagent impuri as obtained in step 4 (b) to the appan sodium and potassium concentration obtai in step $4(a)$. Plot the resulting appara concentrations as abscissas and the knv true value for the alkali oxide as ordina This gives a correction curve which incle the reagent blank. Once obtained, it not necessary to recheck the curve extl when the reagents are changed or when s. change is made in the instrument.

5. Preparation of sample

(a) Place $0.5000 \pm 0.0005 \mathrm{gm}$. of fi: ground sample (passing No. 100 sieve) an agate mortar, add $0.500 \mathrm{gm} . \mathrm{NH}_{4} \mathrm{Cl}$, grind until completely mixed. ${ }^{3}$ Add 4.0 CaCO_{3} to the mixture, grind until well mi and transfer the mixture to a J. Lawrec

[^5]th platinum crucible containing approxiely $0.5 \mathrm{gm} . \mathrm{CaCO}_{3}$ in the bottom. Rinse mortar and pestle with approximately 0.5 CaCO_{3} and add to the crucible. Cap the sible, tap it gently to cause the powder to le, and place it in a slightly inclined position refractory cylinder provided with a suithole to receive the crucible.
) Heat the portion of the crucible within cylinder by means of a fish-tail flame ed well below the crucible for about 15 utes or until the odor of ammonia is no ser perceptible. The heat should not be ing enough to cause vapors of $\mathrm{NH}_{4} \mathrm{Cl}$ to ape. The crucible should be rotated at rvals during the early stages of the ignition. dually increase the heat until the crucible bright red and maintain this temperature 40 to 60 minutes. ${ }^{4}$ Allow the crucible to and transfer the sintered mass to a $250-\mathrm{ml}$. serole. Pour hot water into the crucible digest until all remaining matter can be hed out into the casserole or until it is roughly extracted. Slake the sintered e in the casserole by adding cautiously a milliliters of water, then add approxitely 50 ml . more and digest on the steam h until the cake is thoroughly disintegrated o 8 hours). Disintegration may be aided grinding with an agate pestle during the stion period.
c) After the cake has completely disinrated, adjust the volume of liquid in the serole to approximately 50 ml ., evaporating lecessary. Heat the covered casserole to ling on a hot plate, let the solids settle, I rapidly filter into a $250-\mathrm{ml}$. volumetric 1 k made of acid-resistant glass. Add 30 of hot water to the casserole, break up lumps by gentle pressure with a pestle glass stirring rod, heat to boiling, let settle, 1 filter. Repeat the extraction with 30 of water three more times (a total of r $30-\mathrm{ml}$. washings). Transfer the bulk of 4 residue to the filter paper with a minimum ount of hot water, and wash the residue the paper once or twice with hot water so to bring the filtrate level to within several timeters of the neek of the flask. ${ }^{5}$
Fidd three or four drops of brom-thymol dis), e indicator to the flask and then add conapm trated HCl drop by drop until one drop Whill ises the indicator to change color. Cool : flask and its contents to room temperature, 11 sufficient water to bring the liquid level the calibration mark, and mix well. This ution is then used for the flame-photometer ity ysis.

Determination of sodium oxide

(a) Warm up the apparatus and calibrate the sodium determination, following the tructions given in step 3.
(b) Add a portion of the sample solution the atomizer and record the meter reading the nearest whole division. ${ }^{6}$ Then select standard solution which gives a meter iding closest to the unknown and record its
1 divid In order to obtain a bright red heat, it may be necessary eplace the fish-tail burner with one of the Meker type. $\therefore 7$ The final volume of the filtrate must be as nearly constant in See footnote 2, p. 100.
reading. This latter value should agree to within one division on the meter scale with the average value established during the calibration of the apparatus. If it does not, reset the meter needle to the original calibration point by use of the fine-gain control. Check the zero and 100 division points with the appropriate standard solutions. Finally, alternate the use of the unknown solution and the closest standard until readings for the unknown agree to within one division on the meter scale and the reading for the standard similarly agrees with the calibration point. Record the average of the last two meter readings obtained with the unknown solution.

7. Determination of Potassium Oxide

Follow the same procedure as for $\mathrm{Na}_{2} \mathrm{O}$ (step 6) except that the instrument is calibrated with the wave-length selector set at the point of maximum response to $\mathrm{K}_{2} \mathrm{O}$ by use of the $100-$ p.p.m. standard solution.

8. Calculation of results ?

(a) From the recorded averages of the meter readings for $\mathrm{Na}_{2} \mathrm{O}$ and $\mathrm{K}_{2} \mathrm{O}$ read the concentration to the nearest half division from the

[^6]calibration curve (step 3g). This is the apparent concentration of the alkali oxide in parts per million. Convert this value to the corrected or true concentration by use of the correction curve obtained in step 4.
(b) Calculate the percentage of alkali oxide to the nearest 0.02 percent as follows:
$$
\text { Alkali oxide, percent }=\frac{C}{20}
$$

Where $C=$ true concentration in p.p.m. (from correction curve), and

$$
20=\frac{0.5(\text { weight of sample) }}{250(\text { volume of solution })} \times \frac{1,000,000}{100}
$$

Constant Calibration Check Needed

Careful calibration and a constant check on the calibration of the flame photometer are essential for accurate results. The calibration depends on the constancy of a large number of the system components, such as voltage, tube sensitivity, gain control, gas pressure, air pressure, atomizer efficiency, and burner adjustment. The calibration must be made before each run and certain calibration points checked during a run as directed. However, with the instrument operating normally when the zero and $100-\mathrm{p} . \mathrm{p} . \mathrm{m}$. points are properly set, the balance of the calibration points

Table 1.-Example of data obtained in calibrating the flame photometer with standard solution ${ }^{1}$

Concentration of $\mathrm{Na}_{2} \mathrm{O}$ or $\mathrm{K}_{2} \mathrm{O}$ in standard solution	Meter reading (in divisions) for-							
	$\mathrm{Na}_{2} \mathrm{O}$ determination				$\mathrm{K}_{2} \mathrm{O}$ determination			
	Test 1	Test 2	Test 3	Avg.	Test 1	Test 2	Test 3	Avg.
$\begin{gathered} \text { P.p.m. } \\ 5 \\ 20 \\ 40 \\ 60 \\ 80 \\ 100 \end{gathered}$	$\begin{gathered} 5 \\ 22 \\ 46.5 \\ 70.5 \\ 87 \\ 2100 \end{gathered}$	$\begin{aligned} & 5 \\ & 21 \\ & 46.5 \\ & 70 \\ & 87 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 21 \\ & 45.5 \\ & 70 \\ & 87.5 \end{aligned}$	$\begin{array}{r} 5 \\ 21 \\ 46 \\ 70 \\ 87 \\ 2100 \end{array}$	$\begin{gathered} 3 \\ 18 \\ 39.5 \\ 64 \\ 84 \\ 2100 \end{gathered}$	$\begin{aligned} & 3 \\ & 17 \\ & 38.5 \\ & 63.5 \\ & 83 \end{aligned}$	$\begin{aligned} & 3 \\ & 17 \\ & 39.5 \\ & 64 \\ & 83 \end{aligned}$	$\begin{array}{r} 3 \\ 17 \\ 39 \\ 64 \\ 83 \\ 2100 \end{array}$

${ }_{1}$ The standard solutions were prepared as given in step 2(c) of the method of analysis, page 100.
2 Apparatus was adjusted to give a full-scale deflection of 100 divisions with the standard solution containing 100 p.p.m. of the alkali oxide.

Figure 1.-Typical calibration curves for determination of sodium oxide and potassium oxide with the flame photometer, using the direct-intensity method.

Table 2.-Suggested form for recording test data in flame-photometer analyses

Sample identification	$\mathrm{Na}_{3} \mathrm{O}$ determination (a similar table is used for $\mathrm{K}_{\mathbf{2}} \mathrm{O}$ determination)						
	Meter reading (in divisions) of-				Concentration		
	Nearest standard	Unknown			Apparent	True	On basis of sample
		Test 1	Test 2	A verage			
					P.p.m.	P.p.m.	Percent

usually remain essentially constant so that it may not be necessary to draw a new calibration curve for each run. Also, during the course of a run there is usually very little change in the calibration unless the atomizer is clogged or the burner flooded, in which cases the trouble is immediately apparent. Thus, the practical accomplishment of the conditions necessary for accurate results is not difficult.

Table 1 shows an example of the data obtained in calibrating the instrument. These data are plotted in figure 1. Table 2 presents a convenient form for recording the test data obtained in analyzing unknown samples.

Calcium Interference

The effects of the interference of other constituents on the alkali determination by flame photometry have been described $(3,6)$ for instruments using color filters to isolate the wave lengths. However, the instrument used in this study employs a two-prism monochrometer for wave-length separation and, therefore, it is likely that the interferences may be different than when color filters are used.

The elements to be concerned with are sodium, potassium, and calcium. The other elements which may occur in natural sili-cates-iron, aluminum, barium, lithium, magnesium, manganese, strontium, and chro-mium-have a negligible effect. Furthermore, because of the method of decomposition employed, these constituents will not be present in solution except in very small amounts. Mineral and organic acids will not be present as such to interfere with the results.

Table 3 shows the effects of varying amounts of sodium, potassium, and calcium oxides on the determinations of $\mathrm{Na}_{2} \mathrm{O}$ and $\mathrm{K}_{2} \mathrm{O}$. For these tests the instrument was calibrated and the apparent concentration of the alkali in the solution was determined as described in the method of analysis. The results indicate that for the type of solutions employed sodium and potassium do not interfere with each other within the range of concentration studied. However, the calcium ion (shown as CaO), when present in considerable amounts, has a significant inhibiting effect on determinations of both sodium and potassium.

A study was made to determine the concentration of calcium to be expected in test

Table 3.-Effect of certain constituents on the sodium oxide and potassium oxide determinutions with the flame photometer
[parts per million]

Interfering constituent and its concentration	Amount added: None		Amount added: 5 p.p.m.		$\begin{aligned} & \text { Amount added: } 80 \\ & \text { p.p.m. } \end{aligned}$	
	Amount found	Error	Amount found	Error	Amount found	Error
Sodium Oxide 1 Determination						
$\mathrm{K} 2 \mathrm{O}:{ }^{1}$						
	0	0	- 5	0	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	0
Ca 5	0	0	5	0	80	
	0	0	5	0	80 79	-1
700	$\stackrel{2}{1}$	$+2$	5	0	75	-5
1,200	1	+1 +2	6 7	+1 +2	75 75	-5
2,210.	2	+2	7	+2		-4
Potassium Oxide : Determination						
	($\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0\end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	0
		0	5	0	77	
		0	5	0	75	-5
		0	5	0	74	-6
			4	-1	73 72	-7
		0		-1	71	-8

:The proper amount of $\mathrm{A} . \mathrm{C} . \mathrm{S}$. NaCl or KCl was dissolved in water to give the indicated oxide concentration. ${ }^{2}$ Present in solution as CaCl . The proper amount of $\mathrm{A} . \mathrm{C} . \mathrm{S}$. "low-alkali" CaCO s was neutralized with just sufficient concentrated HCl to give the indicated oxide concentration.
solutions. Aliquot portions were taken f. a group of solutions prepared for the de mination of the alkalies by the flame phot eter. The amount of calcium in each s tion was determined by a standard volume method. The results of these tests are gi in table 4, the calcium being expressed as equivalent amount of CaO . The rangi these results was from approximately 1 to $1,800 \mathrm{p} . \mathrm{p} . \mathrm{m}$. with the average being 1 , Thus, 1,700 p.p.m. of CaO was taken as b a suitable expression of the expected calc concentration in all test solutions. Since data shown in table 3 indicate that the el of calcium does not change greatly concentration, deviations from this avel value which normally may be obtained not be sufficient to make a measurable cha in the interference of the calcium ion.

Table 4.-Concentration of calcium as in test solutions of silicates prepared flame-photometer analysis

${ }_{1}$ Volumetric determination with standard KMnO_{4} on aliquot portion.

A more complete study was made to s the effect of 1,700 p.p.m. of CaO on sodium and potassium determination for range of concentrations usually encounte These analyses were made as before, the calibration curve obtained with pure s tions of NaCl and KCl . The results shown in table 5. These data further firmed the conclusion drawn from the (in table 3 that, for this type of solution within the range studied, the alkalies did affect each other. Also, the interferenci the calcium ion for a definite concentra of one alkali metal is the same regardles the concentration of the other alkali. inhibiting effect of the calcium ion increase the concentration of the alkali increases. should be noted that for the lower concen tions of $\mathrm{Na}_{2} \mathrm{O}, 1,700$ p.p.m. of CaO prodie a positive error (see tables 3 and 5).

Correction Curve for Calcium

The use of a correction curve to correct the effect of the calcium ion is a depart from the usual practice in flame-photome applications. In the usual procedure, cor ${ }^{4}$ tions would be made by using as standards : correction solutions, each of which conts ${ }^{\circ}$) 1,700 p.p.m. of CaO with different amotit of $\mathrm{Na}_{2} \mathrm{O}$ and $\mathrm{K}_{2} \mathrm{O}$. A calibration curve structed from data obtained with these st: tions would then automatically correct for ia interference. For laboratories concerned v ! the analysis of this type of silicate materle

Table 5.-Effect of alkali oxides and 1,700 p.p.m. calcium oxide on the alkali determinations with the flame photometer [parts per million]

$\mathrm{Na}_{2} \mathrm{O}$ determination								$\mathrm{K}_{2} \mathrm{O}$ determination							
Amount of $\mathrm{Na}_{2} \mathrm{O}$ in sample ${ }^{1}$	Apparent $\mathrm{Na}_{2} \mathrm{O}$ determined when amount of $\mathrm{K}_{2} \mathrm{O}$ added ${ }^{1}$ (and 1,700 p.p.m. of CaO also added ${ }^{2}$ in each case) was-						Average apparent $\mathrm{Na}_{2} \mathrm{O}$ determined	Amount of $\mathrm{K}_{2} \mathrm{O}$ in samplo ${ }^{1}$	Apparent $\mathrm{K}_{2} \mathrm{O}$ determined when amount of $\mathrm{Na}_{2} \mathrm{O}$ added ${ }^{1}$ (and 1,700 p.p.m. of CaO also added ${ }^{2}$ in each case) was-						Average apparent $\mathrm{K}_{2} \mathrm{O}$ determined
	0 p.p.m.	5 p.p.m.	20 p.p.m.	60 p.p.m.	80 p.p.m.	100 p.p.m.			0 p.p.m.	5 p.p.m.	20 p.p.m.	60 p.p.m.	80 p.p.m.	100 p.p.m.	
0 5 20 60 80	$\begin{aligned} & 2 \\ & 6 \\ & 20 \\ & 20 \\ & 56.5 \\ & 73 \end{aligned}$	2 6 60 20 55 74.5	1.5 6 318.5 352.5 76	2 7.5 21 57 77.5	$\begin{aligned} & 1 \\ & \frac{1}{7.5} \\ & 21 \\ & 56 \\ & 74.5 \end{aligned}$	-......-	1.7 6.6 20.5 56.1 75.1	$\begin{array}{r} 0 \\ 5 \\ 20 \\ 60 \\ 80 \end{array}$	$\begin{gathered} 1 \\ 5 \\ 15.5 \\ 52 \\ 73 \end{gathered}$	$\begin{array}{r} 0 \\ 5 \\ 16 \\ 52 \\ 72 \end{array}$	1 5 15.5 52.5 368.5	0 5 17.5 355.5 72	0 5 17.5 17. 72	--.......	0.4 5.0 16.4 51.9 72.2
100	------					$\left\{\begin{array}{l}95.5 \\ 95.5\end{array}\right.$	95.3	100					------	$\left\{\begin{array}{l}90.5 \\ 90.5 \\ 90\end{array}\right.$	90.3

${ }_{1}^{1}$ Added to solution as A.C.S. NaCl or KCl in calculated amounts to give indicated oxide concentrations.
2 In solution as A.C.S. CaCl 2 , "low-alkali" CaCO_{3} was dissolved with concentrated HCl , care being taken to avoid excess HCl.
${ }^{3}$ Not included in average.
y , this is obviously the simpler procedure. the Public Roads laboratory, however1 it is believed the same condition will be e in most other laboratories-it is necessary analyze a variety of materials such as soil cement extracts with water, water analysis, , which require the pure $\mathrm{NaCl}-\mathrm{KCl}$ standI solutions. Thus, these standard solutions readily available. Inasmuch as the thod for determining the alkalies in portd cement by flame photometry already yuires a special set of standard solutions (1), iwas considered advisable to limit the num: of different types of standard solutions. addition, once the correction curve is tained for a particular instrument, there is need of repeating this work unless a change made in the reagents or in the instrument. fius, while the use of a correction curve may m to be at first glance an unnecessary step, : practical laboratory applications it is connient and economical.
Since the alkali impurities in the reagents led also must be accounted for, the data itained with the correction solutions alone nnot be used directly as the basis of the rrection curve. Blank determinations were ade using the method as shown. These gave pparent values of the sodium and potassium ncentrations which include the effects of the 700 p.p.m. of CaO , in addition to the alkali upurities. Thus it is necessary to subtract om the blank determinations the effect of the lleium ion for zero concentration of the kali. The resulting value represents the kali impurities in the reagents, and an over1 effect is calculated by adding the value of ze blank to each of the values obtained with 1e correction solution. A curve is then onstructed using these apparent values as bscissas and the corrected or true values as sdinates.
For example, the correction curves used for the eterminations reported in this article were conructed as follows: The averages for each concenation shown in table 5 are equivalent to the ata normally obtained with the correction olutions. Blank determinations showed an verage apparent value of 2.5 p.p.m. for $\mathrm{Na}_{2} \mathrm{O}$ nd 2.0 p.p.m. for $\mathrm{K}_{2} 0$. Table 5 showed the ffect of the calcium ion alone (zero concentraion of alkali) to be +1.7 p.p.m. for the sodium etermination, and +0.4 p.p.m. for the potasium determination. The respective differ-
ences, 0.8 p.p.m. for sodium and 1.6 p.p.m. for potassium, represent the concentration of the alkali resulting from the reagent impurities. The combined effect is obtained by adding these values to the respective average values shown in table 5. These data, given in table 6, were then used to plot the correction curves shown in figure 2.

Comparison with Gravimetric Method

Table 7 shows a comparison between results obtained by an accepted gravimetric procedure and by the flame-photometer method described in this article. A variety of silicates were analyzed, including a large number of soils, in order to obtain as wide a range of alkali content as possible. For most samples there is very good agreement between the flame-photometer and the gravimetric results. For $\mathrm{Na}_{2} \mathrm{O}$, out of 24 samples only 3 showed differences in percentage greater than 0.10. For $\mathrm{K}_{2} \mathrm{O}, 9$ samples showed differences in percentage greater than 0.10 , but only 1 of these differences was greater than 0.15 . The average difference in percentage for sodium was 0.054 while that for potassium was 0.076 . Since in most cases the gravimetric result represents only one determination, there is no

Table 6.-Combined effect of 1,700 p.p.m. calcium oxide and reagent impurities on the alkali determinations with the flame photometer
[parts per million]

$\mathrm{N} a_{2} \mathrm{O}$ added (1)	$\mathrm{Na} \mathrm{Na}_{2} \mathrm{O}$ dc- termined 2	$\mathrm{~K}_{2} \mathrm{O}$ added ${ }^{2}$	$\mathrm{K}_{2} \mathrm{O}$ de- termined ${ }^{2}$
0	2.5	0	2.0
0	7.4	5	6.6
20	21.3	20	18.0
60	5.9	60	53.5
80	75.9	80	73.8
100	96.1	100	91.9

${ }^{1}$ True concentration.
2 Apparent concentration.
assurance that this result is more accurate than that obtained with the flame photometer.

While data on the reproducibility of gravimetric results are limited, table 8 shows a comparison of duplicate gravimetric results for a few materials. These analyses were made in a routine manner, employing the usual technique with the average amount of care. It is noted that the differences between the results of duplicate tests by the gravimetric method are of the same order as differences between results of the gravimetric and flame-photometer methods.

The differences between gravimetric and flame-photometer test results found in this

Figure 2.-Correction curves for the combined effect of 1,700 p.p.m. calcium oxide and the reagent blank on the sodium oxide and potassium oxide determinations with the flame photometer.
paper compare favorably with differences reported for other applications of the flame photometer. Barnes and others (2) recently described a method involving the use of an internal standard (lithium) in an instrument using filters to isolate the desired wave length. While their data for clays gave only the total alkali ($\mathrm{Na}_{2} \mathrm{O}+\mathrm{K}_{2} \mathrm{O}$) determined by chemical means, their differences are of the same order or slightly higher in most cases than the differences shown in this work.

For portland cement analyses the concentration of the test solution is such that 1 p.p.m. is equivalent to 0.01 -percent alkali oxide. Results obtained in the Public Roads laboratory, as well as those which appear in various unpublished reports and in a report by Eubank and Bogue (4), show an average difference in percentage between gravimetric and flame-photometer results of from 0.01 to 0.03 for $\mathrm{Na}_{2} \mathrm{O}$ and from 0.02 to 0.03 for $\mathrm{K}_{2} \mathrm{O}$. In the method for siliceous materials the concentration of the test solution is such that 1 p.p.m. is equivalent to 0.05 percent. Thus, while the actual difference reported for portland cement is less, the difference in terms of concentration of test solution in parts per million is approximately the same.

Application to Non-Portland Hydraulic Cements

An interesting observation may be made in connection with the pozzolanic cements shown in table 7. Flame-photometer results for these same cements by the tentative A.S.T.M. method for portland cements (1) gave, for sample 23, 0.09 percent $\mathrm{Na}_{2} \mathrm{O}$ and 0.39 percent $\mathrm{K}_{2} \mathrm{O}$, and for sample $24,0.13$ percent $\mathrm{Na}_{2} \mathrm{O}$ and 0.59 percent $\mathrm{K}_{2} \mathrm{O}$. These values arc considerably less than those obtained by gravimetric means or by the method given here. These and similar cements have alkalies associated with the acid-insoluble residue which are not brought into solution by the tentative A.S.T.M. method for portland cements. Thus, the proposed procedure (Continued on page 98, third column)
(1) American Society for Testing Materials

Tentative method of test for sodium oxide and potassium oxide in portland cement by flame photometry. Designation: C 228-49T; 1949 Book of A. S. T. M. Standards, Part 3, p. 133.
(2) Barnes, R. B.; Berry, J. W.; and Hill, W. B.

The flame photometer. Engineering and Mining Journal, Sept. 1948, vol. 149, No. 9, p. 92.
(3) Berry, J. W.; Chappell, D. G.; and Barnes, R. B.

Improved method of flame photometry. Industrial and Engineering Chemistry (Anal. Ed.), Jan. 1946, vol. 18, No. 1, p. 19.
(4) Eubank, W. R., and Bogue, R. I.

Studies on the flame photometer for the determination of $\mathrm{Na}_{2} \mathrm{O}$ and $\mathrm{K}_{2} \mathrm{O}$ in portland

Table 7.-Comparison of results obtained by gravimetric and flame-photometer metho

Sample identification	Material	Amount of $\mathrm{Na}_{3} \mathrm{O}$			Amount of $\mathrm{K}_{2} \mathrm{O}$		
		Gravimetric 1	Flame photometer	Difference ${ }^{2}$	Gravimetric 1	Flame photom. eter	Difference ${ }^{2}$
1.	Soil	Percent 0.15	$\begin{gathered} \text { Percent } \\ 0.14 \end{gathered}$	-0.01	Percent 4.08	Percent $\text { 4. } 20$	+0.12
2	So.--do	. 07	. 08	+.01	3. 76	3. 87	+.11
3	do	. 11	. 15	$+.04$. 40	. 34	$-.06$
4	do	. 43	. 45	+. 02	1. 50	1. 61	+. 11
5	do	. 84	. 82	-. 02	2. 22	2.18	$-.04$
6	do	1.03	1.01	$-.02$	2.14	2. 21	$+.07$
7	do	. 72	. 82	+. 10	2.06	2. 18	+. 12
8	do	. 39	. 42	+. 03	1.57	1. 56	$-.01$
9	do	. 50	. 52	+. 02	1.38	1. 41	+. 03
10	do	. 73	. 77	+. 04	2.88	2. 94	+. 06
11	do	. 49	. 58	$+.09$	1.59	1.73	+. 14
12	do	. 92	. 93	$+.01$	2.00	2. 24	+. 24
13	do	. 84	. 90	$+.06$	2.08	2.18	+. 10
14	do	. 10	. 10	. 00	. 21	. 16	-. 05
15.	do	. 15	. 06	$-.09$. 53	. 51	-. 02
16	do	. 31	. 18	-. 13	1.32	1.31	-. 01
17	Slag.	. 19	. 15	-. 04	. 68	. 75	+.07
18.	Trap rock	2. 52	2.77	+. 25	. 76	. 77	+. 01
19.	---do	2. 64	2.69	+. 05	. 79	. 90	+. 11
20	Diorite	3. 90	4.08	+. 18	3.08	3. 23	+. 15
21	Fly ash	. 25	. 25	. 00	2.34	2.34	. 00
22	-...do.	2. 74	2. 69	-. 05	. 81	. 96	+.15
23	Pozzolanic cemen	21	. 19	-. 02	1.23	1. 24	$+.01$
24.	do	16	. 15	$-.01$. 86	. 89	+. 03
Average		------	-	. 054	------	------	. 076

${ }^{1}$ Analyses made by J . Lawrence Smith method of fusion, with potassium being determined as $\mathrm{K}_{2} \mathrm{PtCl}_{0}$ and sodium , tained by difference from the weight of the combined sulfates.
${ }^{2}$ Calculated by subtracting the gravimetric from the flame photometer result.

Table 8.-Comparison of results obtained in duplicate tests by the gravimetric determin tion of sodium and potassium oxide ${ }^{1}$

Sample identification	Material	Amount of $\mathrm{Na}_{2} \mathrm{O}$ found			Amount of $\mathrm{K}_{2} \mathrm{O}$ found		
		Test 1	Test 2	Difference	Test 1	Test 2	Difference
1	Soil	Percent 0. 14	Percent 0.16	0.02	Percent 4.08	Percent 4.08	0.00
3	-... do	. 09	. 14	. 05	4.08 .38	4.08 .43	. 05
4	do	. 51	. 36	. 15	1. 55	1.45	. 10
17.	Slag.	. 21	. 17	. 04	. 66	. 48	. 18
18	Trap rock	2. 55	2. 50	. 05	. 76	. 76	. 00
19	-..do	2. 65	2. 64	. 01	. 81	. 77	. 04
20	Diorite	3.83	3.98	. 15	3.17	3. 00	. 17
21	Fly ash	. 23	. 27	. 04	2. 29	2.38	. 09
23	Pozzolanic cement	. 21	. 21	. 00	1.17	1.29	. 12
24	---do..	. 17	. 15	. 02	. 85	. 88	. 03
Average....				. 053			. 078

${ }^{1}$ Samples analyzed by J. L. Smith method of fusion with CaCO_{3}. Potassium determined as $\mathrm{K}_{2} \mathrm{PtCl}_{6}$ and sodium det mined by difference from the weight of the combined sulfates.

Bibliographic Reference List

cement. National Bureau of Standards: Journal of Research, Aug. 1949, vol. 43, No. 2, p. 173.
(5) Hillebrand, W. F., and Lundell, G. E. F.

Applied inorganic analysis. John Wiley \& Sons, 1929.
(6) Parks, T. D.; Johnson, H. O.; and Lykken, Louis

Errors in the use of a model 18 Perkin-Elmer flame photometer for the determination of alkali metals. Analytical Chemistry, Sept. 1948, vol. 20, No. 9, p. 822.
(7) Pritchard, L. R.

Application of flame photometer to portland cement analysis. Pit and Quarry, July 1948, vol. 41, No. 1, p. 83.
(8) RIeHm, H.
Determination of potassium in lactate
exiracts with the flame photometer without precipi-
tation of calcium. Bodenkunde und Pflanzene nahrung, 1945, vol. 36, p. 109.
(9) Toth, S. J., and Prence, A. L.

Estimation of cation-exchange capaci and exchangeable calcium, potassium and sodiu contents of soils by flame photometer technique Soil Science, June 1949, vol. 67, No. 6, p. 43 (10) Toth, S. J.; Prince, A. L.; Wallace, A and Mikkelsen, D. S.

Rapid quantitative determination eight mineral elements in plant tissue by systematic procedure involving use of a flan photometer. Soil Science, Dec. 1948, vol, 6 No. 6, p. 459.
(11) Wallace, A.; Toth, S. J.; and Bea F. E.

Sodium content of some New Jerst plants. Soil Science, Mar. 1948, vol. 65, Nı 3, p. 249.
(12) Washington, II. S.

Manual of the chemical analysis rocks. John Wiley \& Sons, 1919, p. 19.

The following publications are sold by the Superintendent of Documents, Government Printing Office, Washington 25, D. C. Orders should be sent direct to the Superintendent of Documents. Prepayment is required.

ANNUAL REPORTS

(See also adjacent column)
Reports of the Chief of the Bureau of Public Roads: 1937, 10 cents. 1938, 10 cents. 1939, 10 cents.

Work of the Public Roads Administration:

1940, 10 cents.	1942,10 cents.	1948,20 cents.
1941, 15 cents.	1946,20 cents.	1949,25 cents.
	1947,20 cents.	

HOUSE DOCUMENT NO. 462

Part 1 . . . Nonuniformity of State Motor-Vehicle Traffic Laws. 15 cents.
Part 2 . . . Skilled Investigation at the Scene of the Accident Needed to Develop Causes. 10 cents.
Part 3 . . . Inadequacy of State Motor-Vehicle Accident Reporting. 10 cents.
Part 4 . . . Official Inspection of Vehicles. 10 cents.
Part 5 . . . Case Histories of Fatal Highway Accidents. 10 cents.
Part 6 . . . The Accident-Prone Driver. 10 cents.

UNIFORM VEHICLE CODE

Act I.-Uniform Motor-Vehicle Administration, Registration, Certificate of Title, and Antitheft Act. 10 cents.
Act II.-Uniform Motor-Vehicle Operators' and Chauffeurs' License Act. 10 cents.
Act III.-Uniform Motor-Vehicle Civil Liability Act. 10 cents.
Act IV.-Uniform Motor-Vehicle Safety Responsibility Act. 10 cents.
Act V.-Uniform Act Regulating Traffic on Highways. 20 cents. Model Traffic Ordinance. 15 cents.

MISCELLANEOUS PUBLICATIONS

Bibliography of Highway Planning Reports. 30 cents. Construction of Private Driveways (No. 272MP). 10 cents.
Economic and Statistical Analysis of Highway Construction Expenditures. 15 cents.
Electrical Equipment on Movable Bridges (No. 265T). 40 cents. Federal Legislation and Regulations Relating to Highway Construction. 40 cents.
Financing of Highways by Counties and Local Rural Governments, 1931-41. 45 cents.

Guides to Traffic Safety. 10 cents.
Highway Accidents. 10 cents.
Highway Bond Calculations. 10 cents.
Highway Bridge Location (No. 1486D). 15 cents.
Highway Capacity Manual. 65 cents.
Highway Needs of the National Defense (House Document No. 249). 50 cents.

Highway Practice in the United States of America. 50 cents.
Highway Statistics, 1945. 35 cents.
Highway Statistics, 1946. 50 cents.
Highway Statistics, 1947. 45 cents.
Highway Statistics, 1948. 65 cents.
Highway Statistics, Summary to 1945. 40 cents.
Highways of History. 25 cents.
Identification of Rock Types. 10 cents.
Interregional Highways (House Document No. 379). 75 cents. Legal Aspects of Controlling Highway Access. 15 cents.
Manual on Uniform Traffic Control Devices for Streets and Highways. 50 cents.
Principles of Highway Construction as Applied to Airports, Flight Strips, and Other Landing Areas for Aircraft. \$1.75.
Public Control of Highway Access and Roadside Development. 35 cents.
Public Land Acquisition for Highway Purposes. 10 cents.
Roadside Improvement (No. 191 MP). 10 cents.
Specifications for Constraction of Roads and Bridges in National Forests and National Parks (FP-41). \$1.50.
Taxation of Motor Vehicles in 1932. 35 cents.
The Local Rural Road Problem. 20 cents.
Tire Wear and Tire Failures on Various Road Surfaces. 10 cents.
Transition Curves for Highways. \$1.25.

Single copies of the following publications are available to highway engineers and administrators for official use, and may be obtained by those so qualified upon request addressed to the Bureau of Public. Roads. They are not sold by the Superintendent of Documents.

ANNUAL REPORTS

(See also adjacent column)

Public Roads Administration Annual Reports:
1943.
1944.
1945.

MISCELLANEOUS PUBLICATIONS

Bibliography on Automobile Parking in the United States.
Bibliography on Highway Lighting.
Bibliography on Highway Safety.
Bibliography on Land Acquisition for Public Roads. Bibliography on Roadside Control.
Express Highways in the United States: a Bibliography.
Indexes to Public Roads, volumes 17-19, 22, and 23.
Road Work on Farm Outlets Needs Skill and Right Equipment.

[^0]: The States comprising each census region are indicated table 1.

[^1]: ${ }^{2}$ See TYaffic trends on rural roads, by T. B. Dimmick, Public Roads, vol. 25, No. 12, Feb. 1950; vol. 25, No. 7, Mar. 1949; vol. 25, No. 3, Mar. 1948; vol. 24, No. 10, Oct.* Nov.-Dec. 1946; and Amount and characteristics of trucking on rural roads, by J. T. Lynch and T. B. Dimmick, Public Roads, vol. 23, No. 9, July-Aug.-Sept. 1943.
 ${ }^{3}$ Single-unit trucks with a carrying capacity of less than $11 / 2$ tons.

[^2]: - Tables 10-14 are on pages 90-98.
 ${ }^{7}$ Policy concerning maximum dimensions, weights, and speeds of motor vehicles to be operated over the highways of the United States, adopted April 1, 1916, by the American Association of State Highway Officials; published by the Association in 1946.

[^3]: ${ }^{3}$ The frequency of 28 vehicies of each 1,000 weighed that rceeded the A.A.S.H.O. axle-group recommendation, ound in the final analysis of these data as shown in table 12, s slightly larger than the frequency of 2.56 percent (or 26 per 1,000) found in the preliminary analysis reported to the Subcommittee of the Senate Committee on Interstate and Foreign Commerce.

[^4]: ${ }^{1}$ A fuller explanation will be found in Trends in motorvehicle travel, 1947, Public Roads, vol. 25, No. 3, Mar. 1949, p. 160.

[^5]: ${ }^{2}$ For meter readings of all solutions in the lower half , scale, the apparatus is sufficiently stable and sensiti that readings may be made to the nearest half divisi less.
 ${ }^{3}$ Close control of the quantity of $\mathrm{NH}_{4} \mathrm{Cl}$ is necessary ${ }^{1}$ it directly affects the amount of calcium which goes solution as the chloride.

[^6]: ${ }^{7}$ These calculations are based on a $0.500-\mathrm{gm}$. sample. For samples containing greater than 5 percent of either alkali oxide a smaller sample must be used and the calculations varied accordingly.

